全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

正交氧化还原体系及其应用

DOI: 10.1360/N052015-0054, PP. 969-975

Keywords: 正交氧化还原,合成生物学,化学生物学,辅因子,代谢工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化还原反应是最常见的代谢反应类型之一,其中绝大部分通过辅因子依赖型氧化还原酶催化实现.由于辅因子广泛参与细胞内氧化还原反应及其他生物学过程,因代谢途径改造而扰动辅因子水平的生物学效应尚难以预测.设计构建基于人工辅因子的正交体系,是减少人工代谢途径与内源代谢网络相互干扰、降低系统复杂度、提高调控代谢网络有效性的新策略.本文探讨了正交氧化还原体系的构建方法,并结合实例说明其对提高能量传递特异性和人工代谢途径效率的重要意义.

References

[1]  1 Wang Y, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol, 2013, 24: 994-999
[2]  2 Belsare K D, Ruff A J, Martinez R, et al. P-Link: a method for generating multicomponent cytochrome P450 fusions with variable linker length. Biotechniques, 2014, 57: 13-20
[3]  3 Way J C, Collins J J, Keasling J D, et al. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell, 2014, 157: 151-161
[4]  4 Slusarczyk A L, Lin A, Weiss R. Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet, 2012, 13: 406-420
[5]  5 Orth J D, Conrad T M, Na J, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol, 2011, 7: 535
[6]  6 Zomorrodi A R, Maranas C D. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. Bmc Syst Biol, 2010, 4: 178
[7]  7 de Graef M R, Alexeeva S, Snoep J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol, 1999, 181: 2351-2357
[8]  8 Chen X L, Li S B, Liu L M. Engineering redox balance through cofactor systerms. Trends Biotechnol, 2014, 32: 337-343
[9]  9 王白云, 王晓玥, 王智文, 等. 大肠杆菌氧化还原辅因子代谢工程. 化学进展, 2014, 26: 1609-1618
[10]  10 San K Y, Bennett G N, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4: 182-192
[11]  11 Liang L, Liu R, Chen X, et al. Effects of overexpression of NAPRTase, NAMNAT, and NAD synthetase in the NAD(H) biosynthetic pathways on the NAD(H) pool, NADH/NAD+ ratio, and succinic acid production with different carbon sources by metabolically engineered Escherichia coli. Biochem Eng J, 2013, 81: 90-96
[12]  12 Xu P, Gu Q, Wang W Y, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 2013, 4: 1409
[13]  13 Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol, 2011, 77: 2905-2915
[14]  14 Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng, 2011, 13: 353-363
[15]  15 Mampel J, Buescher J M, Meurer G, et al. Coping with complexity in metabolic engineering. Trends Biotechnol, 2013, 31: 52-60
[16]  16 Bartek T, Blombach B, Zonnchen E, et al. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Progr, 2010, 26: 361-371
[17]  17 Castellana M, Wilson M Z, Xu Y, et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol, 2014, 32: 1011-1018
[18]  18 Chowdhury C, Sinha S, Chun S, et al. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev, 2014, 78: 438-468
[19]  19 Huseby D L, Roth J R. Evidence that a metabolic microcompartment contains and recycles private cofactor pools. J Bacteriol, 2013, 195: 2864-2879
[20]  20 陈必强, 崔彩霞, 谢荣, 等. 多酶催化剂的制备及其应用. 北京化工大学学报(自然科学版), 2014, 41: 1-8
[21]  21 Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27: 753-759
[22]  22 Haga T, Hirakawa H, Nagamune T. Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker. PLoS One. 2013, 8: e75114
[23]  23 Aslan F M, Yu Y, Mohr S C, et al. Engineered single-chain dimeric streptavidins with an unexpected strong preference for biotin-4- fluorescein. Proc Natl Acad Sci USA, 2005, 102: 8507-8512
[24]  24 Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134: 3234-3241
[25]  25 Hirakawa H, Nagamune T. Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem, 2010, 11: 1517-1520
[26]  26 Agapakis C M, Ducat D C, Boyle P M, et al. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng, 2010, 4: 3
[27]  27 Chen R, Chen Q, Kim H, et al. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol, 2014, 28: 59-68
[28]  28 Liu Y F, Zhu Y Q, Ma W L, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng, 2014, 24: 61-69
[29]  29 Conrado R J, Wu G C, Boock J T, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res, 2012, 40: 1879-1889
[30]  30 Delebecque C J, Lindner A B, Silver P A, et al. Organization of intracellular reactions with rationally designed RNA assemblies. Science, 2011, 333: 470-474
[31]  31 Niemeyer C M, Koehler J, Wuerdemann C. DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem, 2002, 3: 242-245
[32]  32 Watanabe H, Hirakawa H, Nagamune T. Phosphite-driven self-sufficient cytochrome P450. Chemcatchem, 2013, 5: 3835-3840
[33]  33 Ji D, Wang L, Hou S, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc, 2011, 133: 20857-20862
[34]  34 Islam K, Chen Y, Wu H, et al. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc Natl Acad Sci USA, 2013, 110: 16778-16783
[35]  35 Cohen M S, Zhang C, Shokat K M, et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science, 2005, 308: 1318-1321
[36]  36 Chockalingam K, Zhao H. Creating new specific ligand-receptor pairs for transgene regulation. Trends Biotechnol, 2005, 23: 333-335
[37]  37 Aktas D F, Cook P F. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Biochemistry, 2008, 47: 2539-2546
[38]  38 Hou S, Ji D, Liu W, et al. Identification of malic enzyme mutants depending on 1,2,3-triazole moiety-containing nicotinamide adenine dinucleotide analogs. Bioorg Med Chem Lett, 2014, 24: 1307-1309
[39]  39 Ji D, Wang L, Liu W, et al. Synthesis of NAD analogs to develop bioorthogonal redox system. Sci China Chem, 2012, 56: 296-300
[40]  40 Rossmann M G, Moras D, Olsen K W. Chemical and biological evolution of nucleotide-binding protein. Nature, 1974, 250: 194-199
[41]  41 Geertz-Hansen H M, Blom N, Feist A M, et al. Cofactory: sequence-based prediction of cofactor specificity of Rossmann folds. Proteins, 2014, 82: 1819-1828
[42]  42 Lill M A, Danielson M L. Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des, 2011, 25: 13-19
[43]  43 Pantazes R J, Grisewood M J, Li T, et al. The iterative protein redesign and optimization (IPRO) suite of programs. J Comput Chem, 2015, 36: 251-263
[44]  44 纪德彬. 生物正交氧化还原体系的构建. 博士学位论文. 大连: 中国科学院大连化学物理研究所, 2012
[45]  45 纪德彬, 王磊, 周雍进, 等. 利用人工氧还酶体系催化L-苹果酸氧化脱羧反应. 催化学报, 2012, 33: 530-535
[46]  46 王磊, 刘玉雪, 谭海东, 等. 基于海泡石的细胞透性化. 生物加工过程, 2015, 13: 57-59
[47]  47 Zhang W, O''Connor K, Wang D I, et al. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl Environ Microbiol, 2009, 75: 687-694
[48]  48 Zhou Y J, Wang L, Yang F, et al. Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD+-auxotrophic mutant. Appl Environ Microbiol, 2011, 77: 6133-6140
[49]  50 Palmieri F, Rieder B, Ventrella A, et al. Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem, 2009, 284: 31249-31259
[50]  51 王磊. 基于烟酰胺胞嘧啶二核苷酸的代谢电路研究. 博士学位论文. 大连: 中国科学院大连化学物理研究所, 2014
[51]  52 Stols L, Donnelly M I. Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol, 1997, 63: 2695-2701
[52]  49 Haferkamp I, Schmitz-Esser S, Linka N, et al. A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature, 2004, 432: 622-625

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133