1 Wang Y, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol, 2013, 24: 994-999
[2]
2 Belsare K D, Ruff A J, Martinez R, et al. P-Link: a method for generating multicomponent cytochrome P450 fusions with variable linker length. Biotechniques, 2014, 57: 13-20
[3]
3 Way J C, Collins J J, Keasling J D, et al. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell, 2014, 157: 151-161
[4]
4 Slusarczyk A L, Lin A, Weiss R. Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet, 2012, 13: 406-420
[5]
5 Orth J D, Conrad T M, Na J, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol, 2011, 7: 535
[6]
6 Zomorrodi A R, Maranas C D. Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. Bmc Syst Biol, 2010, 4: 178
[7]
7 de Graef M R, Alexeeva S, Snoep J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol, 1999, 181: 2351-2357
[8]
8 Chen X L, Li S B, Liu L M. Engineering redox balance through cofactor systerms. Trends Biotechnol, 2014, 32: 337-343
10 San K Y, Bennett G N, Berrios-Rivera S J, et al. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng, 2002, 4: 182-192
[11]
11 Liang L, Liu R, Chen X, et al. Effects of overexpression of NAPRTase, NAMNAT, and NAD synthetase in the NAD(H) biosynthetic pathways on the NAD(H) pool, NADH/NAD+ ratio, and succinic acid production with different carbon sources by metabolically engineered Escherichia coli. Biochem Eng J, 2013, 81: 90-96
[12]
12 Xu P, Gu Q, Wang W Y, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 2013, 4: 1409
[13]
13 Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol, 2011, 77: 2905-2915
[14]
14 Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng, 2011, 13: 353-363
[15]
15 Mampel J, Buescher J M, Meurer G, et al. Coping with complexity in metabolic engineering. Trends Biotechnol, 2013, 31: 52-60
[16]
16 Bartek T, Blombach B, Zonnchen E, et al. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Progr, 2010, 26: 361-371
[17]
17 Castellana M, Wilson M Z, Xu Y, et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol, 2014, 32: 1011-1018
[18]
18 Chowdhury C, Sinha S, Chun S, et al. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev, 2014, 78: 438-468
[19]
19 Huseby D L, Roth J R. Evidence that a metabolic microcompartment contains and recycles private cofactor pools. J Bacteriol, 2013, 195: 2864-2879
21 Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27: 753-759
[22]
22 Haga T, Hirakawa H, Nagamune T. Fine tuning of spatial arrangement of enzymes in a PCNA-mediated multienzyme complex using a rigid poly-L-proline linker. PLoS One. 2013, 8: e75114
[23]
23 Aslan F M, Yu Y, Mohr S C, et al. Engineered single-chain dimeric streptavidins with an unexpected strong preference for biotin-4- fluorescein. Proc Natl Acad Sci USA, 2005, 102: 8507-8512
[24]
24 Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134: 3234-3241
[25]
25 Hirakawa H, Nagamune T. Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem, 2010, 11: 1517-1520
[26]
26 Agapakis C M, Ducat D C, Boyle P M, et al. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng, 2010, 4: 3
[27]
27 Chen R, Chen Q, Kim H, et al. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol, 2014, 28: 59-68
[28]
28 Liu Y F, Zhu Y Q, Ma W L, et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng, 2014, 24: 61-69
[29]
29 Conrado R J, Wu G C, Boock J T, et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res, 2012, 40: 1879-1889
[30]
30 Delebecque C J, Lindner A B, Silver P A, et al. Organization of intracellular reactions with rationally designed RNA assemblies. Science, 2011, 333: 470-474
[31]
31 Niemeyer C M, Koehler J, Wuerdemann C. DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. Chembiochem, 2002, 3: 242-245
33 Ji D, Wang L, Hou S, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc, 2011, 133: 20857-20862
[34]
34 Islam K, Chen Y, Wu H, et al. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation. Proc Natl Acad Sci USA, 2013, 110: 16778-16783
[35]
35 Cohen M S, Zhang C, Shokat K M, et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science, 2005, 308: 1318-1321
[36]
36 Chockalingam K, Zhao H. Creating new specific ligand-receptor pairs for transgene regulation. Trends Biotechnol, 2005, 23: 333-335
[37]
37 Aktas D F, Cook P F. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction. Biochemistry, 2008, 47: 2539-2546
[38]
38 Hou S, Ji D, Liu W, et al. Identification of malic enzyme mutants depending on 1,2,3-triazole moiety-containing nicotinamide adenine dinucleotide analogs. Bioorg Med Chem Lett, 2014, 24: 1307-1309
[39]
39 Ji D, Wang L, Liu W, et al. Synthesis of NAD analogs to develop bioorthogonal redox system. Sci China Chem, 2012, 56: 296-300
[40]
40 Rossmann M G, Moras D, Olsen K W. Chemical and biological evolution of nucleotide-binding protein. Nature, 1974, 250: 194-199
[41]
41 Geertz-Hansen H M, Blom N, Feist A M, et al. Cofactory: sequence-based prediction of cofactor specificity of Rossmann folds. Proteins, 2014, 82: 1819-1828
[42]
42 Lill M A, Danielson M L. Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des, 2011, 25: 13-19
[43]
43 Pantazes R J, Grisewood M J, Li T, et al. The iterative protein redesign and optimization (IPRO) suite of programs. J Comput Chem, 2015, 36: 251-263
47 Zhang W, O''Connor K, Wang D I, et al. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl Environ Microbiol, 2009, 75: 687-694
[48]
48 Zhou Y J, Wang L, Yang F, et al. Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD+-auxotrophic mutant. Appl Environ Microbiol, 2011, 77: 6133-6140
[49]
50 Palmieri F, Rieder B, Ventrella A, et al. Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem, 2009, 284: 31249-31259
52 Stols L, Donnelly M I. Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol, 1997, 63: 2695-2701
[52]
49 Haferkamp I, Schmitz-Esser S, Linka N, et al. A candidate NAD+ transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature, 2004, 432: 622-625