全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动态应答人工生物系统研究进展

DOI: 10.1360/N052015-00051, PP. 935-942

Keywords: 合成生物系统,应答调控,动态,定量,诱导物,光遗传学,基因治疗,糖尿病

Full-Text   Cite this paper   Add to My Lib

Abstract:

代谢和应答是生命的基本特征,自然界中的生命有机体的应答与调控是极度动态和时空精密的.复杂合成生物体系也应具有相应的应答调控特性.通过动态可控的元器件及人工调控系统,调控信息的流动使之对体内外环境动态应答,可用于对生命行为的理解与操纵.发展可与人体相互作用并动态应答的合成生物系统,也将为疾病的干预提供新的可能性.本文简要综述了近年来动态应答合成生物学器件与人工生物系统的研究进展.

References

[1]  1 Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802
[2]  2 Temme K, Zhao D, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci USA, 2012, 109: 7085-7090
[3]  3 Pfleger B F, Pitera D J, Smolke C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol, 2006, 24: 1027-1032
[4]  4 Holtz W J, Keasling J D. Engineering static and dynamic control of synthetic pathways. Cell, 2010, 140: 19-23
[5]  5 Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74
[6]  6 Zhang F, Carothers J M, Keasling J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol, 2012, 30: 354-359
[7]  7 Dahl R H, Zhang F, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol, 2013, 31: 1039-1046
[8]  8 Basu S, Mehreja R, Thiberge S, et al. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci USA, 2004, 101: 6355-6360
[9]  9 Friedland A E, Lu T K, Wang X, et al. Synthetic gene networks that count. Science, 2009, 324: 1199-1202
[10]  10 Liu C, Fu X, Liu L, et al. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334: 238-241
[11]  11 Stricker J, Cookson S, Bennett M R, et al. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456: 516-519
[12]  12 Fu G, Lees R S, Nimmo D, et al. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA, 2010, 107: 4550-4554
[13]  13 Spiegel D A. Grand challenge commentary: synthetic immunology to engineer human immunity. Nature chemical biology, 2010, 6: 871-872
[14]  14 Anderson J C, Clarke E J, Arkin A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol, 2006, 355: 619-627
[15]  15 Xie Z, Wroblewska L, Prochazka L, et al. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 2011, 333: 1307-1311
[16]  16 Ye H, Daoud-El Baba M, Peng R W, et al. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science, 2011, 332: 1565-1568
[17]  17 Wang X, Chen X, Yang Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods, 2012, 9: 266-269
[18]  18 Shapiro A M, Ricordi C, Hering B J, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med, 2006, 355: 1318-1330
[19]  19 de Vos P, Spasojevic M, Faas M M. Treatment of diabetes with encapsulated islets. Adv Exp Med Biol, 2010, 670: 38-53
[20]  20 Hering B J, Cooper D K, Cozzi E, et al. The international xenotransplantation association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—executive summary. Xenotransplantation, 2009, 16: 196-202
[21]  21 Mitanchez D, Doiron B, Chen R, et al. Glucose-stimulated genes and prospects of gene therapy for type I diabetes. Endocr Rev, 1997, 18: 520-540
[22]  22 Nett P C, Sollinger H W, Alam T. Hepatic insulin gene therapy in insulin-dependent diabetes mellitus. Am J Transplant, 2003, 3: 1197-1203
[23]  23 Alam T, Wai P, Held D, et al. Correction of diabetic hyperglycemia and amelioration of metabolic anomalies by minicircle DNA mediated glucose-dependent hepatic insulin production. PLoS One, 2013, 8: e67515
[24]  24 Rossger K, Charpin-El-Hamri G, Fussenegger M. A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice. Nat Commun, 2013, 4: 2825
[25]  25 Stanley S A, Gagner J E, Damanpour S, et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science, 2012, 336: 604-608
[26]  26 Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403: 339-342
[27]  27 Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335-338
[28]  28 Lou C, Liu X, Ni M, et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol, 2010, 6: 350
[29]  29 Danino T, Mondragon-Palomino O, Tsimring L, et al. A synchronized quorum of genetic clocks. Nature, 2010, 463: 326-330
[30]  30 Zhang H, Lin M, Shi H, et al. Programming a pavlovian-like conditioning circuit in Escherichia coli. Nat Commun, 2014, 5: 3102
[31]  31 Isaacs F J, Dwyer D J, Ding C, et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol, 2004, 22: 841-847
[32]  32 Rackham O, Chin J W. A network of orthogonal ribosome X mRNA pairs. Nat Chem Biol, 2005, 1: 159-166
[33]  33 Park S H, Zarrinpar A, Lim W A. Rewiring map kinase pathways using alternative scaffold assembly mechanisms. Science, 2003, 299: 1061-1064
[34]  34 Bashor C J, Helman N C, Yan S, et al. Using engineered scaffold interactions to reshape map kinase pathway signaling dynamics. Science, 2008, 319: 1539-1543
[35]  35 Zhang H, Sheng Y, Wu Q, et al. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli. Quant Biol, 2013, 1: 209-220
[36]  36 Daniel R, Rubens J R, Sarpeshkar R, et al. Synthetic analog computation in living cells. Nature, 2013, 497: 619-623
[37]  37 Arrenberg A B, Stainier D Y, Baier H, et al. Optogenetic control of cardiac function. Science, 2010, 330: 971-974
[38]  38 Witten I B, Lin S C, Brodsky M, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science, 2010, 330: 1677-1681
[39]  41 Airan R D, Thompson K R, Fenno L E, et al. Temporally precise in vivo control of intracellular signalling. Nature, 2009, 458: 1025-1029
[40]  42 Wu Y I, Frey D, Lungu O I, et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 2009, 461: 104-108
[41]  43 Tyszkiewicz A B, Muir T W. Activation of protein splicing with light in yeast. Nat Methods, 2008, 5: 303-305
[42]  44 Editorial N M. Method of the year 2010. Nat Methods, 2011, 8: 1
[43]  45 Motta-Mena L B, Reade A, Mallory M J, et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol, 2014, 10: 196-202
[44]  46 Imayoshi I, Isomura A, Harima Y, et al. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science, 2013, 342: 1203-1208
[45]  47 Choi M, Choi J, Kim S, et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat Photonics, 2013, 7: 987-994
[46]  48 Milias-Argeitis A, Summers S, Stewart-Ornstein J, et al. In silico feedback for in vivo regulation of a gene expression circuit. Nat Biotechnol, 2011, 29: 1114-1116
[47]  49 Toettcher J E, Gong D, Lim W A, et al. Light-based feedback for controlling intracellular signaling dynamics. Nat Methods, 2011, 8: 837-839
[48]  50 Folcher M, Oesterle S, Zwicky K, et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat Commun, 2014, 5: 5392
[49]  51 Kemmer C, Gitzinger M, Daoud-El Baba M, et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat Biotechnol, 2010, 28: 355-360
[50]  52 Bacchus W, Lang M, El-Baba M D, et al. Synthetic two-way communication between mammalian cells. Nat Biotechnol, 2012, 30: 991-996
[51]  53 Grunberg R, Serrano L. Strategies for protein synthetic biology. Nucleic Acids Res, 2010, 38: 2663-2675
[52]  58 Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322: 456-460
[53]  39 Llewellyn M E, Thompson K R, Deisseroth K, et al. Orderly recruitment of motor units under optical control in vivo. Nat Med, 2010, 16: 1161-1165
[54]  40 Levskaya A, Weiner O D, Lim W A, et al. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 2009, 461: 997-1001
[55]  54 Wang B, Barahona M, Buck M, et al. Rewiring cell signalling through chimaeric regulatory protein engineering. Biochem Soc Trans, 2013, 41: 1195-1200
[56]  55 Ha J H, Loh S N. Protein conformational switches: from nature to design. Chemistry, 2012, 18: 7984-7999
[57]  56 Ha J H, Karchin J M, Walker-Kopp N, et al. Engineering domain-swapped binding interfaces by mutually exclusive folding. J Mol Biol, 2012, 416: 495-502
[58]  57 Saven J G. Computational protein design: engineering molecular diversity, nonnatural enzymes, nonbiological cofactor complexes, and membrane proteins. Curr Opin Chem Biol, 2011, 15: 452-457

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133