全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

合成生物学:一种研究生物图案形成的新方法

DOI: 10.1360/N052015-00151, PP. 928-934

Keywords: 图案形成,密度依赖性运动能力模型,周期性条纹,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物图案是如何形成的?这是一个生物学中最基本的问题.在自然界里生物的生理表现极为复杂,因此在大多数情况下,生物图案形成背后的分子机理和原理很难被阐述清楚.由于生物系统的多样性和复杂性,想要理解某一特定图案形成的机理都是很困难的,更不要说理解生物图案形成背后的普遍机理了.尽管目前的遗传和生化方法极大地推进了人们对生物图案形成的认识,这些进步主要还是来源于对功能获得型/功能缺失型突变体的研究,而这些研究颇为费时.当前普遍认为合成生物学是一门应用性的学科,但除了实际应用,合成生物学还可以作为探索生命科学根本问题的方法.本文将以重复周期性生物图案的形成为范例来讨论如何运用合成生物学了解生物图案的形成以及今后如何将其运用到组织工程中去.

References

[1]  1 Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol, 1969, 25: 1-47
[2]  2 Danino T, Mondragón-Palomino O, Tsimring L, et al. A synchronized quorum of genetic clocks. Nature, 2010, 463: 326-330
[3]  3 Tabor J J, Salis H M, Simpson Z B, et al. A synthetic genetic edge detection program. Cell, 2009, 137: 1272-1281
[4]  4 Levskaya A, Chevalier A A, Tabor J J, et al. Synthetic biology: engineering Escherichia coli to see light. Nature, 2005, 438: 441-442
[5]  5 Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434: 1130-1134
[6]  6 You L, Cox R S 3rd, Weiss R, et al. Programmed population control by cell-cell communication and regulated killing. Nature, 2004, 428: 868-871
[7]  7 Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335-338
[8]  8 Elowitz M, Lim W A. Build life to understand it. Nature, 2010, 468: 889-890
[9]  9 Mukherji S, van Oudenaarden A. Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet, 2009, 10: 859-871
[10]  10 Held L I. Models for Embryonic Periodicity. Basel; New York: Karger, 1992. 119
[11]  11 Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature, 1980, 287: 795-801
[12]  12 Lawrence P A. The Making of a Fly: the Genetics of Animal Design. Oxford: Blackwell Scientific Publications. 1992. 228
[13]  13 Peel A D, Chipman A D, Akam M. Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet, 2005, 6: 905-916
[14]  14 Dequéant M L, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet, 2008, 9: 370-382
[15]  15 Schnell S, Maini P K, McInerney D, et al. Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. C R Biol, 2002, 325: 179-189
[16]  16 Sadler T W, Langman J. Langman''s Medical Embryology. Philadelphia: Lippincott Williams & Wilkins, 2000. 504
[17]  17 Dubrulle J, McGrew M J, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell, 2001, 106: 219-232
[18]  18 Pourquié O. The segmentation clock: converting embryonic time into spatial pattern. Science, 2003, 301: 328-330
[19]  19 Finney M, Ruvkun G. Theunc-86gene product couples cell lineage and cell identity in C. elegans. Cell, 1990, 63: 895-890
[20]  20 McKearin D M, Spradling A C. Bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev, 1990, 4: 2242-2251
[21]  21 Sussex I M. Developmental programming of the shoot meristem. Cell, 1989, 56: 225-229
[22]  22 Murray J D. Mathematical Biology. New York: Springer, 2002
[23]  23 Cooke J. Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature, 1975, 254: 196-199
[24]  24 Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL: Chapman & Hall/CRC, 2007. 301-304
[25]  25 May R M. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459-467
[26]  26 Wolpert L. Positional information and pattern formation. Curr Top Dev Biol, 1971, 6: 183-224
[27]  27 Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 2010, 329: 1616-1620
[28]  28 Hodges A. Alan Turing: The Enigma. New York: Simon and Schuster, 1983. 587
[29]  29 Turing A M. The chemical basis of morphogenesis. 1953. Bull Math Biol, 1990, 52: 119-197
[30]  30 Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1961, 1: 445-466
[31]  31 Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE, 1962, 50: 2061-2070
[32]  32 Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci, 1974, 15: 321-346
[33]  33 Maini P K, Myerscough M R, Winters K H, et al. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull Math Biol, 1991, 53: 701-719
[34]  34 Swindale N V. A model for the formation of ocular dominance stripes. Proc R Soc Lond B Biol Sci, 1980, 208: 243-264
[35]  35 Murray J D, Oster G F, Harris A K. A mechanical model for mesenchymal morphogenesis. J Math Biol, 1983, 17: 125-129
[36]  36 Müller P, Rogers K W, Jordan B M, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science, 2012, 336: 721-724
[37]  37 Cates M E, Marenduzzo D, Pagonabarraga I, et al. Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc Natl Acad Sci USA, 2010, 107: 11715-11720
[38]  38 Fu X, Tang L H, Liu C, et al. Stripe formation in bacterial systems with density-suppressed motility. Phys Rev Lett, 2012, 108: 198102
[39]  39 Liu C, Fu X, Liu L, et al. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334: 238-241
[40]  40 Cooke J, Zeeman E C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol, 1976, 58: 455-476
[41]  41 Khalil A S, Collins J J. Synthetic biology: applications come of age. Nat Rev Genet, 2010, 11: 367-379
[42]  42 Benner S A, Sismour A M. Synthetic biology. Nat Rev Genet, 2005, 6: 533-543
[43]  43 Friedland A E, Lu T K, Wang X, et al. Synthetic gene networks that count. Science, 2009, 324: 1199-1202
[44]  44 Skerker J M, Perchuk B S, Siryaporn A, et al. Rewiring the specificity of two component signal transduction systems. Cell, 2008, 133: 1043-1054
[45]  45 Kobayashi H, Kaern M, Araki M, et al. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci USA, 2004, 101: 8414-8419
[46]  46 Balagaddé F K, Song H, Ozaki J, et al. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol, 2008, 4: 187
[47]  47 Lee H H, Molla M N, Cantor C R, et al. Bacterial charity work leads to population-wide resistance. Nature, 2010, 467: 82-85

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133