1 Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol, 1969, 25: 1-47
[2]
2 Danino T, Mondragón-Palomino O, Tsimring L, et al. A synchronized quorum of genetic clocks. Nature, 2010, 463: 326-330
[3]
3 Tabor J J, Salis H M, Simpson Z B, et al. A synthetic genetic edge detection program. Cell, 2009, 137: 1272-1281
[4]
4 Levskaya A, Chevalier A A, Tabor J J, et al. Synthetic biology: engineering Escherichia coli to see light. Nature, 2005, 438: 441-442
[5]
5 Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434: 1130-1134
[6]
6 You L, Cox R S 3rd, Weiss R, et al. Programmed population control by cell-cell communication and regulated killing. Nature, 2004, 428: 868-871
[7]
7 Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335-338
[8]
8 Elowitz M, Lim W A. Build life to understand it. Nature, 2010, 468: 889-890
[9]
9 Mukherji S, van Oudenaarden A. Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet, 2009, 10: 859-871
[10]
10 Held L I. Models for Embryonic Periodicity. Basel; New York: Karger, 1992. 119
[11]
11 Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature, 1980, 287: 795-801
[12]
12 Lawrence P A. The Making of a Fly: the Genetics of Animal Design. Oxford: Blackwell Scientific Publications. 1992. 228
[13]
13 Peel A D, Chipman A D, Akam M. Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet, 2005, 6: 905-916
[14]
14 Dequéant M L, Pourquié O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet, 2008, 9: 370-382
[15]
15 Schnell S, Maini P K, McInerney D, et al. Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. C R Biol, 2002, 325: 179-189
[16]
16 Sadler T W, Langman J. Langman''s Medical Embryology. Philadelphia: Lippincott Williams & Wilkins, 2000. 504
[17]
17 Dubrulle J, McGrew M J, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell, 2001, 106: 219-232
[18]
18 Pourquié O. The segmentation clock: converting embryonic time into spatial pattern. Science, 2003, 301: 328-330
[19]
19 Finney M, Ruvkun G. Theunc-86gene product couples cell lineage and cell identity in C. elegans. Cell, 1990, 63: 895-890
[20]
20 McKearin D M, Spradling A C. Bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev, 1990, 4: 2242-2251
[21]
21 Sussex I M. Developmental programming of the shoot meristem. Cell, 1989, 56: 225-229
[22]
22 Murray J D. Mathematical Biology. New York: Springer, 2002
[23]
23 Cooke J. Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature, 1975, 254: 196-199
[24]
24 Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL: Chapman & Hall/CRC, 2007. 301-304
[25]
25 May R M. Simple mathematical models with very complicated dynamics. Nature, 1976, 261: 459-467
[26]
26 Wolpert L. Positional information and pattern formation. Curr Top Dev Biol, 1971, 6: 183-224
[27]
27 Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 2010, 329: 1616-1620
[28]
28 Hodges A. Alan Turing: The Enigma. New York: Simon and Schuster, 1983. 587
[29]
29 Turing A M. The chemical basis of morphogenesis. 1953. Bull Math Biol, 1990, 52: 119-197
[30]
30 Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J, 1961, 1: 445-466
[31]
31 Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE, 1962, 50: 2061-2070
[32]
32 Meinhardt H, Gierer A. Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci, 1974, 15: 321-346
[33]
33 Maini P K, Myerscough M R, Winters K H, et al. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull Math Biol, 1991, 53: 701-719
[34]
34 Swindale N V. A model for the formation of ocular dominance stripes. Proc R Soc Lond B Biol Sci, 1980, 208: 243-264
[35]
35 Murray J D, Oster G F, Harris A K. A mechanical model for mesenchymal morphogenesis. J Math Biol, 1983, 17: 125-129
[36]
36 Müller P, Rogers K W, Jordan B M, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science, 2012, 336: 721-724
[37]
37 Cates M E, Marenduzzo D, Pagonabarraga I, et al. Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc Natl Acad Sci USA, 2010, 107: 11715-11720
[38]
38 Fu X, Tang L H, Liu C, et al. Stripe formation in bacterial systems with density-suppressed motility. Phys Rev Lett, 2012, 108: 198102
[39]
39 Liu C, Fu X, Liu L, et al. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334: 238-241
[40]
40 Cooke J, Zeeman E C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol, 1976, 58: 455-476
[41]
41 Khalil A S, Collins J J. Synthetic biology: applications come of age. Nat Rev Genet, 2010, 11: 367-379
[42]
42 Benner S A, Sismour A M. Synthetic biology. Nat Rev Genet, 2005, 6: 533-543
[43]
43 Friedland A E, Lu T K, Wang X, et al. Synthetic gene networks that count. Science, 2009, 324: 1199-1202
[44]
44 Skerker J M, Perchuk B S, Siryaporn A, et al. Rewiring the specificity of two component signal transduction systems. Cell, 2008, 133: 1043-1054
[45]
45 Kobayashi H, Kaern M, Araki M, et al. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci USA, 2004, 101: 8414-8419
[46]
46 Balagaddé F K, Song H, Ozaki J, et al. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol, 2008, 4: 187
[47]
47 Lee H H, Molla M N, Cantor C R, et al. Bacterial charity work leads to population-wide resistance. Nature, 2010, 467: 82-85