49 Xu H, Huang W, He Q L, et al. Self-resistance to antitumor antibiotic: a DNA glycosylase triggers the base excision repair system in yatakemycin biosynthesis. Angew Chem Int Ed, 2012, 51: 10532-10536
[2]
50 Goodman C. Biomaterials: in living color. Nat Chem Biol, 2012, 8: 873
[3]
51 Nakajima H, Sato B, Fujita T, et al. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo), 1996, 49: 1196-1203
[4]
52 Albert B J, Sivaramakrishnan A, Naka T, et al. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J Am Chem Soc, 2007, 129: 2648-2659
[5]
1 Newman D J. Natural products as leads to potential drugs: an old process or the new hope for drug discovery. J Med Chem, 2008, 51: 2589-2599
[6]
2 Newman D J, Cragg G M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 2012, 75: 311-335
[7]
3 Walsh C T, Fischbach M A. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc, 2010, 132: 2469-2493
[8]
4 Koehn F E. Biosynthetic medicinal chemistry of natural product drugs. Med Chem Commun, 2012, 3: 854-865
[9]
5 Chang M C, Keasling J D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol, 2006, 2: 674-681
[10]
6 Prather K L, Martin C H. De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol, 2008, 19: 468-474
[11]
7 Weeks A M, Chang M C. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry, 2011, 50: 5404-5418
[12]
8 Winter J M, Tang Y. Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol, 2012, 23: 736-743
[13]
9 Baltz R H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol, 2012, doi: 10.1021/sb3000673
[14]
10 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943
[15]
11 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[16]
12 Scott J D, Williams R M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev, 2002, 102: 1669-1730
[17]
13 Grosso F, Jones R L, Demetri G D, et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol, 2007, 8: 595-602
[18]
14 Carter N J, Keam S J. Trabectedin: a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs, 2007, 67: 2257-2276
[19]
15 Li J W, Vederas J C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325: 161-165
[20]
16 Molinski T F, Dalisay D S, Lievens S L, et al. Drug development from marine natural products. Nat Rev Drug Discov, 2009, 8: 69-85
[21]
17 Siengalewicz P, Rinner U, Mulzer J. Recent progress in the total synthesis of naphthyridinomycin and lemonomycin tetrahydroisoquinoline antitumor antibiotics (TAAs). Chem Soc Rev, 2008, 37: 2676-2690
[22]
18 Liao X W, Dong W F, Liu W, et al. Synthetic progress of the tetrahydroisoquinoline antitumor alkaloids. Chinese J Org Chem, 2010, 30: 317-329
[23]
19 Cuevas C, Pérez M, Martín M J, et al. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett, 2000, 2: 2545-2548
[24]
20 Cuevas C, Francesch A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep, 2009, 26: 322-337
[25]
21 Arai T, Takahashi K, Ishiguro K, et al. Increased production of saframycin A and isolation of saframycin S. J Antibiot (Tokyo), 1980, 33: 951-960
[26]
22 Mikami Y, Takahashi K, Yazawa K, et al. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J Biol Chem, 1985, 260: 344-348
[27]
23 Velasco A, Acebo P, Gomez A, et al. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Mol Microbiol, 2005, 56: 144-154
[28]
24 Li L, Deng W, Song J, et al. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol, 2008, 190: 251-263
[29]
25 Peng C, Tang Y M, Li L, et al. In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O. Sci China Chem, 2012, 55: 90-97
[30]
26 Kluepfel D, Baker H A, Piattoni G, et al. Naphthyridinomycin, a new broad-spectrum antibiotic. J Antibiot (Tokyo), 1975, 28: 497-502
[31]
27 Beman V S, Montenegro D A, Korshalla J D, et al. Bioxalomycins, new antibiotics produced by the marine Streptomyces sp. LL31F508: taxonomy and fermentation. J Antibiot (Tokyo), 1994, 47: 1417-1424
[32]
28 Pu J Y, Peng C, Tang M C, et al. Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly. Org Lett, 2013, 15: 3674-3677
30 Zmijewski M J, Mikolajczak M, Viswanatha V, et al. Biosynthesis of the antitumor antibiotic naphthyridinomycin. J Am Chem Soc, 1982, 104: 4969-4971
[35]
31 Peng C, Pu J Y, Song L Q, et al. Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line. Proc Natl Acad Sci USA, 2012, 109: 8540-8545
[36]
32 Tang M C, Fu C Y, Tang G L. Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-Me-Tyr to 3-OH-5-Me-Tyr in saframycin A biosynthesis. J Biol Chem, 2012, 287: 5112-5121
[37]
33 Fu C Y, Tang M C, Peng C, et al. Biosynthesis of 3-hydroxy-5-methyl-O-methyltyrosine in the saframycin/safracin biosynthetic pathway. J Microbiol Biotechnol, 2009, 19: 439-446
35 Koketsu K, Minami A, Watanabe K, et al. Pictet-Spenglerase involved in tetrahydroisoquinoline antibiotic biosynthesis. Curr Opin Chem Biol, 2012, 16: 142-149
[40]
36 Koketsu K, Watanabe K, Suda H, et al. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms. Nat Chem Biol, 2010, 6: 408-410
[41]
37 Hiratsuka T, Koketsu K, Minami A, et al. Core assembly mechanism of quinocarcin/SF-1739: bimodular complex nonribosomal peptide synthetases for sequential mannich-type reactions. Chem Biol, 2013, 20: 1523-1535
[42]
38 Rath C M, Janto B, Earl J, et al. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol, 2011, 6: 1244-1256
[43]
39 Olano C, Méndez C, Salas J A. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep, 2009, 26: 628-660
[44]
40 Olano C, Méndez C, Salas J A. Post-PKS tailoring steps in natural product-producing actinomycetes from perspective of combinatorial biosynthesis. Nat Prod Rep, 2010, 27: 571-616
[45]
41 Challis G L. Genome mining for novel natural product discovery. J Med Chem, 2008, 51: 2618-2628
[46]
42 Sohda K Y, Nagai K, Yamori T, et al. YM-216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis. I. fermentation, isolation and biological activities. J Antibiot (Tokyo), 2005, 58: 27-31
[47]
43 Jian X H, Pan H X, Ning T T, et al. Analysis of YM-216391 biosynthetic gene cluster and improvement of the cyclopeptide production in a heterologous host. ACS Chem Biol, 2012, 7: 646-651
[48]
44 Igarashi Y, Futamata K, Fujita T, et al. Yatakemycin, a novel antifungal antibiotic produced by Streptomyces sp. TP-A0356. J Antibiot (Tokyo), 2003, 56: 107-113
[49]
45 Parrish J P, Kastrinsky D B, Wolkenberg S E, et al. DNA alkylation properties of yatakemycin. J Am Chem Soc, 2003, 125: 10971-10976
[50]
46 Trzupek J D, Gottesfeld J M, Boger D L. Alkylation of duplex DNA in nucleosome core particles by duocarmycin SA and yatakemycin. Nat Chem Biol, 2006, 2: 79-82
[51]
47 Huang W, Xu H, Li Y, et al. Characterization of yatakemycin gene cluster revealing a radical SAM-dependent MT and highlighting spirocyclopropane biosynthesis. J Am Chem Soc, 2012, 134: 8831-8840
[52]
48 Hill R A, Sutherland A. Hot off the press. Nat Prod Rep, 2012, 29: 617-621
[53]
53 Kaida D, Motoyoshi H, Tashiro E, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol, 2007, 3: 576-583
[54]
54 Webb T R, Joyner A S, Potter P M. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov Today, 2013, 18: 43-49
[55]
55 Zhang F, He H Y, Tang M C, et al. Cloning and elucidation of the FR901464 gene cluster revealing a complex AT-less PKS using glycerate as starter units. J Am Chem Soc, 2011, 133: 2452-2462
[56]
56 Tang M C, He H Y, Zhang F, et al. Baeyer-Villiger oxidation of ACP-tethered thioester to ACP-linked thiocarbonate catalyzed by a monooxygenase domain in FR901464 biosynthesis. ACS Catal, 2013, 3: 444-447
[57]
57 He H Y, Tang M C, Zhang F, et al. Cis-Double bond formation by thioesterase and transfer by ketosynthase in FR901464 biosynthesis. J Am Chem Soc, 2014, 136: 4488-4491
[58]
58 Hill R A, Sutherland A. Hot off the press. Nat Prod Rep, 2015, 32: 1364-1368
[59]
59 亮点介绍(4)篇. 有机化学, 2014, 34: 1034-1035
[60]
60 He H Y, Yuan H, Tang M C, et al. An unusual dehydratase acting on glycerate and a ketoreducatse stereoselectively reducing a-ketone in polyketide starter unit biosynthesis. Angew Chem Int Ed, 2014, 53: 113151-113159
[61]
61 Liu X, Biswas S, Berg M G, et al. Genomics-guided discovery of Thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod, 2013, 76: 685-693
[62]
62 Eustáquio A S, Janso J E, Ratnayake A S, et al. Spliceostatin hemiketal biosynthesis in Burkholderia spp. is catalyzed by an iron/a-ketoglutarate-dependent dioxygenase. Proc Natl Acad Sci USA, 2014, 111: E3376-3385
[63]
63 He H, Ratnayake A S, Janso J E, et al. Cytotoxic spliceostatins from Burkholderia sp. and their semisynthetic analogues. J Nat Prod, 2014, 77: 1864-1870
[64]
64 Furumai T, Igarashi Y, Higuchi H, et al. Kosinostatin, a quinocycline antibiotic with antitumor activity from Micromonospora sp. TP-A0468. J Antibiot (Tokyo), 2002, 55: 128-133
[65]
65 Ma H M, Zhou Q, Tang Y M, et al. Unconventional origin and hybrid system for construction of pyrrolopyrrole moiety in kosinostatin biosynthesis. Chem Biol, 2013, 20: 796-805