全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

天然产物生物合成与抗肿瘤药物合成生物学研究

DOI: 10.1360/N052015-00049, PP. 1027-1039

Keywords: 天然产物,生物合成,合成生物学,药物发现与生产

Full-Text   Cite this paper   Add to My Lib

Abstract:

结构复杂多样的天然产物是现代药物的重要组成部分和新药发现的重要源泉.天然产物的生物合成研究,是从基因和蛋白水平阐明天然产物的合成途径,通过酶催化的化学反应将基因与化合物的结构单元建立一种对应关系,从而理解自然界神奇的化学合成、生物拮抗及生理调控过程.天然产物的合成生物学研究核心是通过在发酵友好、高效的微生物中设计、构建目标化合物的生物合成途径,经系统地调控和优化重组微生物,从而发酵生产来源稀缺的天然产物类药物、前体或新化合物.本文结合相关领域的进展,对本研究组近年来关于抗肿瘤天然产物生物合成及抗癌药物合成生物学的工作进行系统的介绍.

References

[1]  49 Xu H, Huang W, He Q L, et al. Self-resistance to antitumor antibiotic: a DNA glycosylase triggers the base excision repair system in yatakemycin biosynthesis. Angew Chem Int Ed, 2012, 51: 10532-10536
[2]  50 Goodman C. Biomaterials: in living color. Nat Chem Biol, 2012, 8: 873
[3]  51 Nakajima H, Sato B, Fujita T, et al. New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo), 1996, 49: 1196-1203
[4]  52 Albert B J, Sivaramakrishnan A, Naka T, et al. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J Am Chem Soc, 2007, 129: 2648-2659
[5]  1 Newman D J. Natural products as leads to potential drugs: an old process or the new hope for drug discovery. J Med Chem, 2008, 51: 2589-2599
[6]  2 Newman D J, Cragg G M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 2012, 75: 311-335
[7]  3 Walsh C T, Fischbach M A. Natural products version 2.0: connecting genes to molecules. J Am Chem Soc, 2010, 132: 2469-2493
[8]  4 Koehn F E. Biosynthetic medicinal chemistry of natural product drugs. Med Chem Commun, 2012, 3: 854-865
[9]  5 Chang M C, Keasling J D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol, 2006, 2: 674-681
[10]  6 Prather K L, Martin C H. De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol, 2008, 19: 468-474
[11]  7 Weeks A M, Chang M C. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells. Biochemistry, 2011, 50: 5404-5418
[12]  8 Winter J M, Tang Y. Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol, 2012, 23: 736-743
[13]  9 Baltz R H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth Biol, 2012, doi: 10.1021/sb3000673
[14]  10 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943
[15]  11 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[16]  12 Scott J D, Williams R M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev, 2002, 102: 1669-1730
[17]  13 Grosso F, Jones R L, Demetri G D, et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol, 2007, 8: 595-602
[18]  14 Carter N J, Keam S J. Trabectedin: a review of its use in the management of soft tissue sarcoma and ovarian cancer. Drugs, 2007, 67: 2257-2276
[19]  15 Li J W, Vederas J C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325: 161-165
[20]  16 Molinski T F, Dalisay D S, Lievens S L, et al. Drug development from marine natural products. Nat Rev Drug Discov, 2009, 8: 69-85
[21]  17 Siengalewicz P, Rinner U, Mulzer J. Recent progress in the total synthesis of naphthyridinomycin and lemonomycin tetrahydroisoquinoline antitumor antibiotics (TAAs). Chem Soc Rev, 2008, 37: 2676-2690
[22]  18 Liao X W, Dong W F, Liu W, et al. Synthetic progress of the tetrahydroisoquinoline antitumor alkaloids. Chinese J Org Chem, 2010, 30: 317-329
[23]  19 Cuevas C, Pérez M, Martín M J, et al. Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett, 2000, 2: 2545-2548
[24]  20 Cuevas C, Francesch A. Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep, 2009, 26: 322-337
[25]  21 Arai T, Takahashi K, Ishiguro K, et al. Increased production of saframycin A and isolation of saframycin S. J Antibiot (Tokyo), 1980, 33: 951-960
[26]  22 Mikami Y, Takahashi K, Yazawa K, et al. Biosynthetic studies on saframycin A, a quinone antitumor antibiotic produced by Streptomyces lavendulae. J Biol Chem, 1985, 260: 344-348
[27]  23 Velasco A, Acebo P, Gomez A, et al. Molecular characterization of the safracin biosynthetic pathway from Pseudomonas fluorescens A2-2: designing new cytotoxic compounds. Mol Microbiol, 2005, 56: 144-154
[28]  24 Li L, Deng W, Song J, et al. Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a NRPS system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol, 2008, 190: 251-263
[29]  25 Peng C, Tang Y M, Li L, et al. In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O. Sci China Chem, 2012, 55: 90-97
[30]  26 Kluepfel D, Baker H A, Piattoni G, et al. Naphthyridinomycin, a new broad-spectrum antibiotic. J Antibiot (Tokyo), 1975, 28: 497-502
[31]  27 Beman V S, Montenegro D A, Korshalla J D, et al. Bioxalomycins, new antibiotics produced by the marine Streptomyces sp. LL31F508: taxonomy and fermentation. J Antibiot (Tokyo), 1994, 47: 1417-1424
[32]  28 Pu J Y, Peng C, Tang M C, et al. Naphthyridinomycin biosynthesis revealing the use of leader peptide to guide nonribosomal peptide assembly. Org Lett, 2013, 15: 3674-3677
[33]  29 潘海学, 唐功利. 非核糖体肽合成酶催化的非常规装配模式. 微生物学通报, 2013, 40: 1783-1795
[34]  30 Zmijewski M J, Mikolajczak M, Viswanatha V, et al. Biosynthesis of the antitumor antibiotic naphthyridinomycin. J Am Chem Soc, 1982, 104: 4969-4971
[35]  31 Peng C, Pu J Y, Song L Q, et al. Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line. Proc Natl Acad Sci USA, 2012, 109: 8540-8545
[36]  32 Tang M C, Fu C Y, Tang G L. Characterization of SfmD as a heme peroxidase that catalyzes the regioselective hydroxylation of 3-Me-Tyr to 3-OH-5-Me-Tyr in saframycin A biosynthesis. J Biol Chem, 2012, 287: 5112-5121
[37]  33 Fu C Y, Tang M C, Peng C, et al. Biosynthesis of 3-hydroxy-5-methyl-O-methyltyrosine in the saframycin/safracin biosynthetic pathway. J Microbiol Biotechnol, 2009, 19: 439-446
[38]  34 唐满成, 唐功利. 抗肿瘤活性四氢异喹啉抗生素的生物合成研究进展. 有机化学, 2012, 32: 1568-1576
[39]  35 Koketsu K, Minami A, Watanabe K, et al. Pictet-Spenglerase involved in tetrahydroisoquinoline antibiotic biosynthesis. Curr Opin Chem Biol, 2012, 16: 142-149
[40]  36 Koketsu K, Watanabe K, Suda H, et al. Reconstruction of the saframycin core scaffold defines dual Pictet-Spengler mechanisms. Nat Chem Biol, 2010, 6: 408-410
[41]  37 Hiratsuka T, Koketsu K, Minami A, et al. Core assembly mechanism of quinocarcin/SF-1739: bimodular complex nonribosomal peptide synthetases for sequential mannich-type reactions. Chem Biol, 2013, 20: 1523-1535
[42]  38 Rath C M, Janto B, Earl J, et al. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol, 2011, 6: 1244-1256
[43]  39 Olano C, Méndez C, Salas J A. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep, 2009, 26: 628-660
[44]  40 Olano C, Méndez C, Salas J A. Post-PKS tailoring steps in natural product-producing actinomycetes from perspective of combinatorial biosynthesis. Nat Prod Rep, 2010, 27: 571-616
[45]  41 Challis G L. Genome mining for novel natural product discovery. J Med Chem, 2008, 51: 2618-2628
[46]  42 Sohda K Y, Nagai K, Yamori T, et al. YM-216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis. I. fermentation, isolation and biological activities. J Antibiot (Tokyo), 2005, 58: 27-31
[47]  43 Jian X H, Pan H X, Ning T T, et al. Analysis of YM-216391 biosynthetic gene cluster and improvement of the cyclopeptide production in a heterologous host. ACS Chem Biol, 2012, 7: 646-651
[48]  44 Igarashi Y, Futamata K, Fujita T, et al. Yatakemycin, a novel antifungal antibiotic produced by Streptomyces sp. TP-A0356. J Antibiot (Tokyo), 2003, 56: 107-113
[49]  45 Parrish J P, Kastrinsky D B, Wolkenberg S E, et al. DNA alkylation properties of yatakemycin. J Am Chem Soc, 2003, 125: 10971-10976
[50]  46 Trzupek J D, Gottesfeld J M, Boger D L. Alkylation of duplex DNA in nucleosome core particles by duocarmycin SA and yatakemycin. Nat Chem Biol, 2006, 2: 79-82
[51]  47 Huang W, Xu H, Li Y, et al. Characterization of yatakemycin gene cluster revealing a radical SAM-dependent MT and highlighting spirocyclopropane biosynthesis. J Am Chem Soc, 2012, 134: 8831-8840
[52]  48 Hill R A, Sutherland A. Hot off the press. Nat Prod Rep, 2012, 29: 617-621
[53]  53 Kaida D, Motoyoshi H, Tashiro E, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol, 2007, 3: 576-583
[54]  54 Webb T R, Joyner A S, Potter P M. The development and application of small molecule modulators of SF3b as therapeutic agents for cancer. Drug Discov Today, 2013, 18: 43-49
[55]  55 Zhang F, He H Y, Tang M C, et al. Cloning and elucidation of the FR901464 gene cluster revealing a complex AT-less PKS using glycerate as starter units. J Am Chem Soc, 2011, 133: 2452-2462
[56]  56 Tang M C, He H Y, Zhang F, et al. Baeyer-Villiger oxidation of ACP-tethered thioester to ACP-linked thiocarbonate catalyzed by a monooxygenase domain in FR901464 biosynthesis. ACS Catal, 2013, 3: 444-447
[57]  57 He H Y, Tang M C, Zhang F, et al. Cis-Double bond formation by thioesterase and transfer by ketosynthase in FR901464 biosynthesis. J Am Chem Soc, 2014, 136: 4488-4491
[58]  58 Hill R A, Sutherland A. Hot off the press. Nat Prod Rep, 2015, 32: 1364-1368
[59]  59 亮点介绍(4)篇. 有机化学, 2014, 34: 1034-1035
[60]  60 He H Y, Yuan H, Tang M C, et al. An unusual dehydratase acting on glycerate and a ketoreducatse stereoselectively reducing a-ketone in polyketide starter unit biosynthesis. Angew Chem Int Ed, 2014, 53: 113151-113159
[61]  61 Liu X, Biswas S, Berg M G, et al. Genomics-guided discovery of Thailanstatins A, B, and C as pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod, 2013, 76: 685-693
[62]  62 Eustáquio A S, Janso J E, Ratnayake A S, et al. Spliceostatin hemiketal biosynthesis in Burkholderia spp. is catalyzed by an iron/a-ketoglutarate-dependent dioxygenase. Proc Natl Acad Sci USA, 2014, 111: E3376-3385
[63]  63 He H, Ratnayake A S, Janso J E, et al. Cytotoxic spliceostatins from Burkholderia sp. and their semisynthetic analogues. J Nat Prod, 2014, 77: 1864-1870
[64]  64 Furumai T, Igarashi Y, Higuchi H, et al. Kosinostatin, a quinocycline antibiotic with antitumor activity from Micromonospora sp. TP-A0468. J Antibiot (Tokyo), 2002, 55: 128-133
[65]  65 Ma H M, Zhou Q, Tang Y M, et al. Unconventional origin and hybrid system for construction of pyrrolopyrrole moiety in kosinostatin biosynthesis. Chem Biol, 2013, 20: 796-805

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133