17 Strauss G, Fuchs G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. Euro J Biochem, 1993, 215: 633-643
[2]
18 Berg I A. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science, 2007, 318: 1782-1786
[3]
19 Ragsdale S W. The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors, 1997, 6: 3-11
[4]
1 Statistical review of world energy. workbook (xlsx). London: BP, 2013
[5]
2 2014 Key world energy statistics. International Energy Agency, 2014: 24-28
[6]
3 Jos G J. Olivier G J M, Marilena M, et al. Trends in global CO2 emissions-2013 report. 2013
[7]
4 Angermayr S A, Paszota M, Hellingwerf K J. Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol, 2012, 78: 7098-7106
[8]
5 Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng, 2011, 13: 353-363
[9]
6 Dexter J, Fu P C. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci, 2009, 2: 857-864
[10]
7 Lan E I, Liao J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA, 2012, 109: 6018-6023
[11]
8 Atsumi S, Higashide W, Liao J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol, 2009, 27: 1177-1180
[12]
9 Zhou J, Zhang H, Zhang Y, et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng, 2012, 14: 394-400
[13]
10 Bentley F K, Melis A. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng, 2012, 109: 100-109
[14]
11 Zhou J, Zhang H, Meng H, et al. Production of optically pure D-lactate from CO2 by blocking the PHB and acetate pathways and expressing D-lactate dehydrogenase in cyanobacterium Synechocystis sp. PCC 6803. Process Biochem, 2014, 49: 2071-2077
[15]
12 Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329: 52-56
[16]
13 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943
[17]
14 Ducat D C, Silver P A. Improving carbon fixation pathways. Curr Opin Chem Biol, 2012, 16: 337-344
[18]
15 Stitt M, Lunn J, Usadel B. Arabidopsis and primary photosynthetic metabolism—more than the icing on the cake. Plant J, 2010, 61: 10 67-1091
[19]
16 Herter S, Farfsing J, Gad O N, et al. Autotrophic CO2 fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. J Bacteriol, 2001, 183: 4305-4316
[20]
20 Drake H L. Acetogenesis. Berlin: Springer, 1994. 3-60
[21]
21 Kim B W, Chang H N, Kim I K, et al. Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor. Biotechnoland Bioeng, 1992, 40: 583-592
[22]
22 Evans M C, Buchanan B B, Arnon D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA, 1966, 55: 928-934
[23]
23 Calvin M. The path of carbon in photosynthesis. J Chem Edu, 1949, 26: 639
[24]
25 Bar-Even A, Noor E, Lewis N E, et al. Design and analysis of synthetic carbonfixation pathways. Proc Natl Acad Sci USA, 2010, 107: 8889-8894
[25]
26 Huber H, Gallenberger M, Jahn U, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Proc Natl Acad Sci USA, 2008, 105: 7851-7856
[26]
27 Berg I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol, 2011, 77: 1925-1936
[27]
28 Jahn U, Huber H, Eisenreich W, et al. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J Bacteriol, 2007, 189: 4108-4119
[28]
29 Zhuang Z Y, Li S Y. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol, 2013, 150: 79-88
[29]
30 Guadalupe-Medina V, Wisselink H W, Luttik M A, et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnol Biofuels, 2013, 6: 125-136
[30]
31 Keller M W, Schut G J, Lipscomb G L, et al. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci USA, 2013, 110: 5840-5845
[31]
32 Mattozzi M, Ziesack M, Voges M J, et al. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: toward horizontal transfer of autotrophic growth. Metab Eng, 2013, 16: 130-139
[32]
33 Bonacci W, Teng P K, Afonso B, et al. Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA, 2012, 109: 478-483
[33]
34 Gong F, Liu G, Zhai X, et al. Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation. Biotech Biofuels, 2015, 8: 86
[34]
35 Kebeish R, Niessen M, Thiruveedhi K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol, 2007, 25: 593-599
[35]
36 Price G D, Badger M R, von Caemmerer S. The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol, 2011, 155: 20-26
[36]
37 Price G D, Pengelly J J, Forster B, et al. The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot, 2013, 64: 753-768
[37]
38 Covshoff S, Hibberd J M. Integrating C4 photosynthesis into C3 crops to increase yield potentia. Curr Opin Biotechnol, 2012, 23: 209-214
[38]
39 Delebecque C J, Lindner A B, Silver P A, et al. Organization of intracellular reactions with rationally designed RNA assemblies. Science, 2011, 333: 470-474
[39]
40 Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27: 753-759
[40]
41 Cai Z, Liu G, Zhang J, et al. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein cell, 2014: 1-11
[41]
24 Calvin M, Massini P. The path of carbon in photosynthesis. Cell Mol Life Sci, 1952, 8: 445-457
[42]
42 Kumar A, Li C, Portis A R Jr. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosyn Res, 2009, 100: 143-153
[43]
43 Kurek I, Chang T K, Bertain S M, et al. Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell, 2007, 19: 3230-3241
[44]
44 Lin M T, Occhialini A, Andralojc P J, et al. A faster Rubisco with potential to increase photosynthesis in crops. Nature, 2014, 513: 547-550
[45]
45 Genkov T, Meyer M, Griffiths H, et al. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas. J Biol Chem, 2010, 285: 19833-19841
[46]
46 Ishikawa C, Hatanaka T, Misoo S, et al. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol, 2011, 156: 1603-1611
[47]
47 Rosenthal D M, Locke A M, Khozaei M, et al. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC plant Biol, 2011, 11: 123
[48]
48 Li H, Opgenorth P H, Wernick D G, et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science, 2012, 335: 1596
[49]
49 Khunjar W O, Sahin A, West A C, et al. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One, 2012, 7: e44846
[50]
50 Martinez A, Bradley A S, Waldbauer J R, et al. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Natl Acad Sci USA, 2007, 104: 5590-5595
[51]
51 Cheng S, Xing D, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol, 2009, 43: 3953-3958
[52]
52 Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio, 2010, doi: 10.1128/mBio.00103-10
[53]
53 Yu J. Artificial photosynthetic system for high efficiency capture and conversion of solar energy and carbon dioxide. Power Energy Syst, Lect Notes Inform Technol, 2012, 13: 64-69