2 Watson J D, Crick F H. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 1953, 171: 737-738
[3]
3 Crick F. Central dogma of molecular biology. Nature, 1970, 227: 561-563
[4]
4 Margulies M, Egholm M, Altman W E, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437: 376-380
[5]
5 Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860-921
[6]
6 Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304-1351
[7]
7 Blight K J, Kolykhalov A A, Rice C M. Efficient initiation of HCV RNA replication in cell culture. Science, 2000, 290: 1972-1974
[8]
8 Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297: 1016-1018
[9]
9 Smith H O, Hutchison C A 3rd, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA, 2003, 100: 15440-15445
[10]
10 Chan L Y, Kosuri S, Endy D. Refactoring bacteriophage T7. Mol Syst Biol, 2005, 1: 20050018
[11]
11 Itaya M, Fujita K, Kuroki A, et al. Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods, 2008, 5: 41-43
[12]
12 Gibson D G, Smith H O, Hutchison C A 3rd, et al. Chemical synthesis of the mouse mitochondrial genome. Nat Methods, 2010, 7: 901-903
[13]
13 Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 2008, 319: 1215-1220
[14]
14 Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329: 52-56
[15]
15 Dymond J S, Richardson S M, Coombes C E, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477: 471-476
[16]
16 Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344: 55-58
18 Giaever G, Chu A M, Ni L, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418: 387-391
[19]
19 Sugiyama M, Ikushima S, Nakazawa T, et al. PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. BioTechniques, 2005, 38: 909-914
[20]
20 Sugiyama M, Nakazawa T, Murakami K, et al. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2008, 80: 545-553
[21]
21 Murakami K, Tao E, Ito Y, et al. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol, 2007, 75: 589-597
[22]
22 Hirashima K, Iwaki T, Takegawa K, et al. A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acids Res, 2006, 34: e11
[23]
23 Giga-Hama Y, Tohda H, Takegawa K, et al. Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem, 2007, 46: 147-155
[24]
24 Liu Q, Wu Y, Yang P, et al. mazF-mediated deletion system for large-scale genome engineering in Saccharomyces cerevisiae. Res Microbiol, 2014, 165: 836-840
[25]
25 Kim Y. G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93: 1156-1160
[26]
26 Mani M, Smith J, Kandavelou K, et al. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun, 2005, 334: 1191-1197
[27]
27 Ramirez C L, Certo M T, Mussolino C, et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res, 2012, 40: 5560-5568
[28]
28 Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326: 1509-1512
[29]
29 Lillestol R K, Redder P, Garrett R A, et al. A putative viral defence mechanism in archaeal cells. Archaea, 2006, 2: 59-72
[30]
30 Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821
[31]
31 Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826
[32]
32 Aouida M, Piatek M J, Bangarusamy D K, et al. Activities and specificities of homodimeric TALENs in Saccharomyces cerevisiae. Curr Genet, 2014, 60: 61-74
[33]
33 DiCarlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res, 2013, 41: 4336-4343
[34]
34 Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154: 442-451
[35]
35 Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152: 1173-1183
[36]
36 Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460: 894-898
[37]
37 Isaacs F J, Carr P A, Wang H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 2011, 333: 348-353
[38]
38 DiCarlo J E, Conley A J, Penttila M, et al. Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol, 2013, 2: 741-749
[39]
39 Engler C, Marillonnet S. Generation of families of construct variants using golden gate shuffling. Methods Mol Biol, 2011, 729: 167-181
[40]
40 Chen W H, Qin Z J, Wang J, et al. The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly. Nucleic Acids Res, 2013, 41: e93
[41]
41 Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 4: 251-256
[42]
42 Gibson D G, Young L, Chuang R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6: 343-345
[43]
43 Horton R M, Hunt H D, Ho S N, et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene, 1989, 77: 61-68
[44]
44 Quan J, Tian J. Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One, 2009, 4: e6441
[45]
45 Gibson D G, Benders G A, Axelrod K C, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA, 2008, 105: 20404-20409
47 Pennisi E. Building the ultimate yeast genome. Science, 2014, 343: 1426-1429
[48]
48 Oliver S G, van der Aart Q J, Agostoni-Carbone M L, et al. The complete DNA sequence of yeast chromosome III. Nature, 1992, 357: 38-46
[49]
49 Lin Q, Jia B, Mitchell L A, et al. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae. ACS Synth Biol, 2015, 4: 213-220
[50]
50 Hoess R H, Wierzbicki A, Abremski K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res, 1986, 14: 2287-2300
[51]
51 Dymond J, Boeke J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng Bugs, 2012, 3: 168-171