1 Cameron D E, Bashor C J, Collins J J. A brief history of synthetic biology. Nat Rev Microbiol, 2014, 12: 381-390
[2]
2 Chao R, Yuan Y, Zhao H. Recent advances in DNA assembly technologies. FEMS Yeast Res, 2014, doi: 10.1111/1567-1364.12171
[3]
3 Shetty R P, Endy D, Knight T F Jr. Engineering biobrick vectors from biobrick parts. J Biol Eng, 2008, 2: 5
[4]
4 Partregistry. Registry of standard biological parts. 2014, http://www.webcitation.org/6O8Ha2b2B
[5]
5 Elowitz M B, Levine A J, Siggia E D, et al. Stochastic gene expression in a single cell. Science, 2002, 297: 1183-1186
[6]
6 Blake W J, Kaern M, Cantor C R, et al. Noise in eukaryotic gene expression. Nature, 2003, 422: 633-637
[7]
7 Luo Y Z, Huang H, Liang J, et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun, 2013, 4: 2894
[8]
8 Yamanaka K, Reynolds K A, Kersten R D, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA, 2014, 111: 1957-1962
[9]
9 Warner J R, Reeder P J, Karimpour-Fard A, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides. Nat Biotechnol, 2010, 28: 856-862
[10]
10 Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823
[11]
11 Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496: 528-532
[12]
12 Holtz W J, Keasling J D. Engineering static and dynamic control of synthetic pathways. Cell, 2010, 140: 19-23
[13]
13 Anderson J C, Clarke E J, Arkin A P, et al. Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol, 2006, 355: 619-627
[14]
14 Zhang F, Carothers J M, Keasling J D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol, 2012, 30: 354-359
[15]
15 Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460: 894-898
[16]
16 Jiang W Y, Bikard D, Cox D, et al. Rna-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013, 31: 233-239
[17]
17 Bao Z, Xiao H, Liang J, et al. Homology-integrated CRISPR-Cas(HI-CRISPR) system for one-step multigene disruption in saccharomyces cerevisiae. Acs Synth Biol, 2014, in press
[18]
18 Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403: 339-342
[19]
19 Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335-338
[20]
20 Guet C C, Elowitz M B, Hsing W, et al. Combinatorial synthesis of genetic networks. Science, 2002, 296: 1466-1470
[21]
21 Baker D, Group B F, Church G, et al. Engineering life: building a fab for biology. Sci Am, 2006, 294: 44-51
[22]
22 Kim B, Du J, Eriksen D T, et al. Combinatorial design of a highly efficient xylose-utilizing pathway in saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microb, 2013, 79: 931-941
[23]
23 Shao Z Y, Zhao H, Zhao H M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res, 2009, 37: e16
[24]
24 Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol, 2009, 27: 946-950
[25]
25 Curran K A, Crook N C, Karim A S, et al. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun, 2014, 5: 4002
[26]
26 MacDonald J T, Barnes C, Kitney R I, et al. Computational design approaches and tools for synthetic biology. Integr Biol (Camb), 2011, 3: 97-108
[27]
27 Brophy J A, Voigt C A. Principles of genetic circuit design. Nat Methods, 2014, 11: 508-520
[28]
28 Lewis N E, Nagarajan H, Palsson B O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol, 2012, 10: 291-305
[29]
29 Prather K L, Martin C H. De novo biosynthetic pathways: rational design of microbial chemical factories. Curr Opin Biotechnol, 2008, 19: 468-474
[30]
30 Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-D280
[31]
31 Ellis L B, Roe D, Wackett L P. The university of minnesota biocatalysis/biodegradation database: the first decade. Nucleic Acids Res, 2006, 34: D517-D521
[32]
32 Schomburg I, Chang A, Schomburg D. Standardization in enzymology—data integration in the world''s enzyme information system brenda. Perspect Sci, 2014, 1: 15-23
[33]
33 Hatzimanikatis V, Li C, Ionita J A, et al. Exploring the diversity of complex metabolic networks. Bioinformatics, 2005, 21: 1603-1609
[34]
34 Gonzalez-Lergier J, Broadbelt L J, Hatzimanikatis V. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J Am Chem Soc, 2005, 127: 9930-9938
[35]
35 Hou B K, Ellis L B, Wackett L P. Encoding microbial metabolic logic: predicting biodegradation. J Ind Microbiol Biotechnol, 2004, 31: 261-272
[36]
36 Lu G, Moriyama E N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform, 2004, 5: 378-388
[37]
37 Hillson N J, Rosengarten R D, Keasling J D. J5 DNA assembly design automation software. Acs Synth Biol, 2012, 1: 14-21
[38]
38 Appleton E, Tao J H, Haddock T, et al. Interactive assembly algorithms for molecular cloning. Nat Methods, 2014, 11: 657-662
[39]
39 Ellis T, Adie T, Baldwin G S. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb), 2011, 3: 109-118
[40]
40 McLennan A. Building with Biobricks: Constructing a Commons for Synthetic Biology Research. Cheltenham: Edward Elgar, 2012. 176-201
[41]
41 Grünberg R, Arndt K, Müller K. Fusion protein (freiburg) biobrick assembly standard[OL]. [2009-04-. http://hdl.handle.net/1721.1/45140
[42]
42 Phillips I, Silver P. A new biobrick assembly strategy designed for facile protein engineering[OL]. [2006-04-. http://hdl.handle.net/1721.1/32535
[43]
43 Anderson J C, Dueber J E, Leguia M, et al. BglBricks: a flexible standard for biological part assembly. J Biol Eng, 2010, 4: 1
[44]
44 Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3: e3647
[45]
45 Gibson D G, Young L, Chuang R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6: 343-345
[46]
46 Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science, 2008, 319: 1215-1220
[47]
47 Itaya M, Fujita K, Kuroki A, et al. Bottom-up genome assembly using the bacillus subtilis genome vector. Nat Methods, 2008, 5: 41-43
[48]
48 Yonemura I, Nakada K, Sato A, et al. Direct cloning of full-length mouse mitochondrial DNA using a bacillus subtilis genome vector. Gene, 2007, 391: 171-177
[49]
49 Zhu C F, Naqvi S, Breitenbach J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA, 2008, 105: 18232-18237
[50]
50 Farre G, Naqvi S, Sanahuja G, et al. Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway. Methods Mol Biol, 2012, 847: 419-435
[51]
51 Zhang Y M, Muyrers J P, Testa G, et al. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol, 2000, 18: 1314-1317
[52]
52 Fu J, Bian X Y, Hu S B, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol, 2012, 30: 440-446
[53]
53 Pachuk C J, Samuel M, Zurawski J A, et al. Chain reaction cloning: a one-step method for directional ligation of multiple DNA fragments. Gene, 2000, 243: 19-25
[54]
54 De Kok S, Stanton L H, Slaby T, et al. Rapid and reliable DNA assembly via ligase cycling reaction. Acs Synth Biol, 2014, 3: 97-106
[55]
55 Wingler L M, Cornish V W. Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci USA, 2011, 108: 15135-15140
[56]
56 Anderson P R, Haj-Ahmad Y. Counter-selection facilitated plasmid construction by homologous recombination in saccharomyces cerevisiae. Biotechniques, 2003, 35: 692-694
[57]
57 Kuijpers N G, Solis-Escalante D, Bosman L, et al. A versatile, efficient strategy for assembly of multi-fragment expression vectors in saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact, 2013, 12: 47
[58]
58 Liang J, Chao R, Abil Z, et al. Fairytale: a high-throughput tal effector synthesis platform. Acs Synth Biol, 2014, 3: 67-73
[59]
59 Guye P, Li Y, Wroblewska L, et al. Rapid, modular and reliable construction of complex mammalian gene circuits. Nucleic Acids Res, 2013, 41: e156
[60]
60 Torella J P, Boehm C R, Lienert F, et al. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Res, 2014, 42: 681-689
[61]
61 Casini A, MacDonald J T, De Jonghe J, et al. One-pot DNA construction for synthetic biology: the modular overlap-directed assembly with linkers (modal) strategy. Nucleic Acids Res, 2014, 42: e7
[62]
62 Kosuri S, Church G M. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods, 2014, 11: 499-507
[63]
63 Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science, 2008, 319: 1215-1220
[64]
64 Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329: 52-56
[65]
65 Annaluru N, Muller H, Mitchell L A, et al. Total synthesis of a functional designer eukaryotic chromosome. Science, 2014, 344: 55-58
[66]
66 Dharmadi Y, Patel K, Shapland E, et al. High-throughput, cost-effective verification of structural DNA assembly. Nucleic Acids Res, 2014, 42: e22
[67]
67 Metzker M L. Sequencing technologies—the next generation. Nat Rev Genet, 2010, 11: 31-46
[68]
68 Coen M, Holmes E, Lindon J C, et al. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem Res Toxicol, 2008, 21: 9-27
[69]
69 Fiehn O. Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends Analyt Chem, 2008, 27: 261-269
[70]
70 Khakimov B, Motawia M S, Bak S, et al. The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics. Anal Bioanal Chem, 2013, 405: 9193-9205
[71]
71 Allwood J W, Goodacre R. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochem Anal, 2010, 21: 33-47
[72]
72 Mischak H, Coon J J, Novak J, et al. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev, 2009, 28: 703-724
[73]
73 Lapainis T, Rubakhin S S, Sweedler J V. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem, 2009, 81: 5858-5864
[74]
74 Khakimov B, Bak S, Engelsen S B. High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. J Cereal Sci, 2014, 59: 393-418
76 Vaidyanathan S, Goodacre R. Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Commun Mass Spectrom, 2007, 21: 2072-2078
[77]
77 Yanes O. Metabolomics playing pinata with single cells. Nat Chem Biol, 2013, 9: 471-473
[78]
78 Rubakhin S S, Romanova E V, Nemes P, et al. Profiling metabolites and peptides in single cells. Nat Methods, 2011, 8: S20-S29