22 Orgel L E. Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol, 2004, 39: 99-123
[2]
23 Hargreaves W R, Deamer D W. Liposomes from ionic, single-chain amphiphiles. Biochemistry, 1978, 17: 3759-3768
[3]
24 Rajamani S, Vlassov A, Benner S, et al. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph, 2008, 38: 57-74
[4]
25 Kim D E, Joyce G F. Cross-catalytic replication of an RNA ligase ribozyme. Chem Biol, 2004, 11: 1505-1512
[5]
26 Ashkenasy G, Jagasia R, Yadav M, et al. Design of a directed molecular network. Proc Natl Acad Sci USA, 2004, 101: 10872-10877
[6]
27 Hutchison C A, Peterson S N, Gill S R, et al. Global transposon mutagenesis and a minimal mycoplasma genome. Science, 1999, 286: 2165-2169
[7]
28 Szostak J W, Bartel D P, Luisi P L. Synthesizing life. Nature, 2001, 409: 387-390
[8]
29 Chiarabelli C, Luisi P L. Chemical synthetic biology. Sci Prog, 2014, 97: 48-61
[9]
30 Kamionkowski M. The universe in a nutshell. Science, 2002, 296: 267-267
[10]
31 Gould S J, Lewontin R C. The spandrels of san marco and the panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci, 1979, 205: 581-598
[11]
32 Parker G A, Smith J M. Optimality theory in evolutionary biology. Nature, 1990, 348: 27-33
[12]
33 Scheiner S M. Selection experiments and the study of phenotypic plasticity. J Evol Biol, 2002, 15: 889-898
[13]
34 Poelwijk F J, de Vos M G, Tans S J. Tradeoffs and optimality in the evolution of gene regulation. Cell, 2011, 146: 462-470
[14]
35 Barkai N, Leibler S. Robustness in simple biochemical networks. Nature, 1997, 387: 913-917
[15]
36 Kollmann M, Lovdok L, Bartholome K, et al. Design principles of a bacterial signalling network. Nature, 2005, 438: 504-507
[16]
37 Cagatay T, Turcotte M, Elowitz M B, et al. Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 2009, 139: 512-522
[17]
38 Peisajovich S G. Evolutionary synthetic biology. ACS Syn Biol, 2012, 1: 199-210
[18]
39 Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction. Annu Rev Biochem, 2000, 69: 183-215
[19]
40 Skerker J M, Perchuk B S, Siryaporn A, et al. Rewiring the specificity of two-component signal transduction systems. Cell, 2008, 133: 1043-1054
[20]
41 Groban E S, Clarke E J, Salis H M, et al. Kinetic buffering of cross talk between bacterial two-component sensors. J Mol Biol, 2009, 390: 380-393
[21]
42 Siryaporn A, Perchuk B S, Laub M T, et al. Evolving a robust signal transduction pathway from weak cross-talk. Mol Syst Biol, 2010, 6: 452
[22]
43 Dueber J E, Yeh B J, Chak K, et al. Reprogramming control of an allosteric signaling switch through modular recombination. Science, 2003, 301: 1904-1908
[23]
44 Peisajovich S G, Garbarino J E, Wei P, et al. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science, 2010, 328: 368-372
[24]
45 Good M C, Zalatan J G, Lim W A. Scaffold proteins: hubs for controlling the flow of cellular information. Science, 2011, 332: 680-686
[25]
46 Park S H, Zarrinpar A, Lim W A. Rewiring map kinase pathways using alternative scaffold assembly mechanisms. Science, 2003, 299: 1061-1064
[26]
47 Isaacs F J, Carr P A, Wang H H, et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science, 2011, 333: 348-353
[27]
48 Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460: 894-898
[28]
49 Ellefson J W, Meyer A J, Hughes R A, et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat Biotechnol, 2014, 32: 97-101
[29]
50 Carlson J C, Badran A H, Guggiana-Nilo D A, et al. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol, 2014, 10: 216-222
[30]
51 Esvelt K M, Carlson J C, Liu D R. A system for the continuous directed evolution of biomolecules. Nature, 2011, 472: 499-503
[31]
52 Seeman N C. Nucleic acid junctions and lattices. J Theor Biol, 1982, 99: 237-247
[32]
53 Robinson B H, Seeman N C. The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng, 1987, 1: 295-300
[33]
54 Seeman N C. DNA in a material world. Nature, 2003, 421: 427-431
[34]
55 Rothemund P W. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440: 297-302
[35]
56 Yin P, Hariadi R F, Sahu S, et al. Programming DNA tube circumferences. Science, 2008, 321: 824-826
[36]
57 Ke Y, Ong L L, Shih W M, et al. Three-dimensional structures self-assembled from DNA bricks. Science, 2012, 338: 1177-1183
[37]
58 Yurke B, Turberfield A J, Mills A P Jr. et al. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406: 605-608
[38]
59 Sherman W B, Seeman N C. A precisely controlled DNA biped walking device. Nano Lett, 2004, 4: 1801-1801
[39]
60 Seelig G, Soloveichik D, Zhang D Y, et al. Enzyme-free nucleic acid logic circuits. Science, 2006, 314: 1585-1588
[40]
61 Yin P, Choi H M, Calvert C R, et al. Programming biomolecular self-assembly pathways. Nature, 2008, 451: 318-322
[41]
62 Yeh B J, Rutigliano R J, Deb A, et al. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature, 2007, 447: 596-600
[42]
63 Boyle P M, Silver P A. Harnessing nature''s toolbox: regulatory elements for synthetic biology. J R Soc Interface, 2009, 6 Suppl 4: S535-S546
[43]
64 Purnick P E, Weiss R. The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol, 2009, 10: 410-422
[44]
65 Jayaraman A, Wood T K. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng, 2008, 10: 145-167
[45]
66 Basu S, Gerchman Y, Collins C H, et al. A synthetic multicellular system for programmed pattern formation. Nature, 2005, 434: 1130-1134
[46]
67 Danino T, Mondragon-Palomino O, Tsimring L, et al. A synchronized quorum of genetic clocks. Nature, 2010, 463: 326-330
[47]
68 Liu C, Fu X, Liu L, et al. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334: 238-241
[48]
1 Benner S A, Sismour A M. Synthetic biology. Nat Rev Genet, 2005, 6: 533-543
[49]
2 Koide T, Pang W L, Baliga N S. The role of predictive modelling in rationally re-engineering biological systems. Nat Rev Microbiol, 2009, 7: 297-305
[50]
3 Lucentini J. Is this life? Scientist, 2006, 20: 30
[51]
4 Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403: 335-338
[52]
5 Sprinzak D, Elowitz M B. Reconstruction of genetic circuits. Nature, 2005, 438: 443-448
[53]
6 Stricker J, Cookson S, Bennett M R, et al. A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456: 516-519
[54]
7 Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403: 339-342
[55]
8 Kim J, White K S, Winfree E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol, 2006, 2: 68
[56]
9 Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature, 2000, 405: 590-593
[57]
10 Endy D. Foundations for engineering biology. Nature, 2005, 438: 449-453
[58]
11 Metzgar D, Bacher J M, Pezo V, et al. Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res, 2004, 32: 5780-5790
[59]
12 Cello J, Paul A V, Wimmer E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 2002, 297: 1016-1018
[60]
13 Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete chemical synthesis, assembly, and cloning of a mycoplasma genitalium genome. Science, 2008, 319: 1215-1220
[61]
14 Lartigue C, Glass J I, Alperovich N, et al. Genome transplantation in bacteria: changing one species to another. Science, 2007, 317: 632-638
[62]
15 Chan L Y, Kosuri S, Endy D. Refactoring bacteriophage T7. Mol Syst Biol, 2005, 1: 2005. 0018
[63]
16 Noireaux V, Bar-Ziv R, Godefroy J, et al. Toward an artificial cell based on gene expression in vesicles. Phys Biol, 2005, 2: 1-8
[64]
17 Monnard P A, Deamer D W. Membrane self-assembly processes: steps toward the first cellular life. Anat Rec, 2002, 268: 196-207
[65]
18 Luisi P L, Chiarabelli C. Chemical Synthetic Biology. Chichester: Wiley, 2011
[66]
19 Schopf J W. Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci, 2006, 361: 869-885
[67]
20 Kasting J F. Earth''s early atmosphere. Science, 1993, 259: 920-926
[68]
21 Miller S L. A production of amino acids under possible primitive earth conditions. Science, 1953, 117: 528-529