全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

合成生物学技术在聚羟基脂肪酸酯PHA生产中的应用

DOI: 10.1360/N052015-00042, PP. 1003-1014

Keywords: PHA,合成生物学,代谢工程,生物材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

合成生物学的迅猛发展使其在各个领域得到了广泛应用,底盘设计、元件组装、代谢网络的从头构建、大片段DNA克隆、多片段DNA拼接等合成生物学技术的开发和利用大大提高了工业生物技术的竞争力.聚羟基脂肪酸酯(PHA)是一种具有生物可降解和生物相容性等优良特性的生物塑料,可以在许多细菌胞内合成,已经被开发应用于多个领域.但是,PHA高昂的生产成本阻碍了其大规模应用.基于合成生物学研究而得到的新方法、新技术可以改变细菌生长模式、生长条件以及细菌形态,从而进一步降低PHA的生产成本.另一方面,通过改造细菌基因组如弱化b-氧化途径可以得到不同种类的重组菌株,用于生产具有不同性能的包括无规共聚物、嵌段共聚物、带有官能团的聚合物等在内的新型多功能PHA材料.合成生物学的应用开创了低成本、高附加值的PHA材料生产的新时代,为PHA的产业化奠定了坚实的基础.

References

[1]  1 Chen G Q. A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev, 2009, 38: 2434-2446
[2]  2 Gumel A M, Annuar M S M, Chisti Y. Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ, 2013, 21: 580-605
[3]  4 Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci, 2000, 25: 1503-1555
[4]  5 Hazer B, Steinbüchel A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol, 2007, 74: 1-12
[5]  6 Steinbüchel A, Valentin H E. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbial Lett, 1995, 128: 219-228
[6]  7 Wang Y, Yin J, Chen G Q. Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol, 2014, 25: 183-193
[7]  8 Doi Y, Kunioka M, Nakamura Y, et al. Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate. Macromolecules, 1988, 21: 2722-2727
[8]  9 Kunioka M, Kawaguchi Y, Doi Y. Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Alcaligenes eutrophus. Appl Microbiol Biotechnol, 1989, 30: 569-573
[9]  10 Meng D C, Shi Z Y, Wu L P, et al. Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng, 2012, 14: 317-324
[10]  11 Hu D, Chung A L, Wu L P, et al. Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules, 2011, 12: 3166-3173
[11]  12 Griffin G J. Chemistry and Technology of Biodegradable Polymers. London: Springer, 1994
[12]  13 Aldor A S, Keasling J D. Process design for microbial plastic factories: metabolic engineering of poly-hydroxyalkanoates. Curr Opin Biotechnol, 2003,14: 475-483
[13]  3 Chung A L, Zeng G D, Jin H L, et al. Production of medium-chain-length 3-hydroxyalkanoicacids by b-oxidation and phaC operon deleted Pseudomonas entomophila harboring thioesterase gene. Metab Eng, 2013, 17: 23-29
[14]  14 Benner S A. Synthetic biology: act natural. Nature, 2003, 421: 118
[15]  15 Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329: 52-56
[16]  16 Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802
[17]  17 陈国强, 罗荣聪, 徐军, 等. 聚羟基脂肪酸酯生态产业链—生产与应用技术指南. 北京: 化学工业出版社, 2008. 22-27
[18]  18 Fu J, Bian X, Hu S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol, 2012, 30: 440-446
[19]  19 Anderson J, Dueber J E, Leguia M, et al. Bglbricks: a flexible standard for biological part assembly. J Biol Eng, 2010, 4: 1-12
[20]  20 Gibson D G, Young L, Chuang R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6: 343-345
[21]  21 Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3: e3647
[22]  22 Engler C, Gruetzner R, Kandzia R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 2009, 4: e5553
[23]  23 Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 4: 251-256
[24]  24 Wang R Y, Shi Z Y, Guo Y Y, et al. DNA fragments assembly based on nicking enzyme system. PLoS One, 2013, 8: e57943
[25]  25 Kodumal S J, Patel K G, Reid R, et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci USA, 2004, 101: 15573-15578
[26]  26 Farrar K, Donnison I S. Construction and screening of BAC libraries made from Brachypodium genomic DNA. Nat Protoc, 2007, 2: 1661-1674
[27]  27 Wang R Y, Shi Z Y, Chen J C, et al. Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing. ACS Synth Biol, 2012, 1: 291-295
[28]  28 Schneider D, Pohl T, Walter J, et al. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta, 2008, 1777: 735-739
[29]  29 Wang R Y, Shi Z Y, Chen J C, et al. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase. Metab Eng, 2012, 14: 496-503
[30]  32 Martínez-García E, Aparicio T, de Lorenzo V, et al. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front Bioeng Biotechnol, 2014, 2: 46
[31]  33 Silva-Rocha R, Martínez-García E, Calles B, et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res, 2013, 41: D666-D675
[32]  34 Leong Y K, Show P L, Ooi C W, et al. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol, 2014, 18: 52-65
[33]  35 Li Z J, Shi Z Y, Jian J, et al. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng, 2010, 12: 352-359
[34]  36 Eggink G, de Waard P, Huijberts G N. Formation of novel poly(hydroxyalkanoates) from long-chain fatty-acids. Can J Microbiol, 1995, 41: 14-21
[35]  37 Liu Q, Luo G, Zhou X R, et al. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metab Eng, 2011, 13: 11-17
[36]  38 Chung A L, Jin H L, Huang L J, et al. Biosynthesis and characterization of poly(3-hydroxydodecanoate) by beta-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules, 2011, 12: 3559-3566
[37]  39 Zhuang Q, Wang Q, Liang Q, et al. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid b-oxidation cycle in Escherichia coli. Metab Eng, 2014, 24: 78-86
[38]  40 Gao C, Qi Q, Madzak C, et al. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. J Ind Microbiol Biot, 2015, 42: 1255-1262
[39]  41 Wang Y, Chen R, Cai J Y, et al. Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PLoS One, 2013, 8: e60318
[40]  42 Silva L F, Gomez J G, Oliveira M S, et al. Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. J Biotechnol, 2000, 76: 165-174
[41]  43 Yang J E, Choi Y J, Lee S J, et al. Metabolic engineering of Escherichia coli for biosynthesis of poly (3-hydroxybutyrate-co-3- hydroxyvalerate) from glucose. Appl Microbiol Biotechnol, 2014, 98: 95-104
[42]  44 Tan D, Xue Y S, Aibaidula G, et al. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol, 2011, 102: 8130-8136
[43]  45 Fu X Z, Tan D, Aibaidula G, et al. Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng, 2014, 23: 78-91
[44]  46 Yin J, Wang H, Fu X Z, et al. Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp. Appl Microbiol Biotechnol, 2015, 99: 1-12
[45]  47 Heinrich D, Raberg M, Steinbüchel A. Synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum. FEMS Microbiol Lett, 2015, 362: fnv038
[46]  48 Saito Y, Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol, 1994, 16: 99-104
[47]  49 Zhou X Y, Yuan X X, Shi Z Y, et al. Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact, 2012, 11: 54
[48]  50 Bates F S, Fredrickson G H. Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem, 1990, 41: 525-557
[49]  51 Pederson E N, McChalicher C W, Srienc F. Bacterial synthesis of PHA block copolymers. Biomacromolecules, 2006, 7: 1904-1911
[50]  52 Tripathi L, Wu L P, Chen J C, et al. Synthesis of Diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a b-oxidation weakened Pseudomonas putida KT2442. Microb Cell Fact, 2012, 11: 44
[51]  53 Tobin K M, O’Connor K E. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons. FEMS Microbiol Lett, 2005, 253: 111-118
[52]  54 Kim D Y, Kim Y B, Rhee Y H. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J of Biol Macromol, 2000, 28: 23-29
[53]  55 Shen R, Cai L W, Meng D C, et al. Benzene containing polyhydroxyalkanoates homo- and copolymers synthesized by genome edited Pseudomonas entomophila. Sci China Life Sci, 2014, 57: 4-10
[54]  56 Li S J, Cai L W, Wu L P, et al. Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by b-oxidation deleted Pseudomonas entomophila. Biomacromolecules, 2014, 15: 2010-2019
[55]  30 Leonhartsberger S, Korsa I, B?ck A. The molecular biology of formate metabolism in enterobacteria. J Mol Microbiol Biotechnol, 2002, 4: 269-276
[56]  31 Chen R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv, 2012, 30: 1102-1107
[57]  57 Bi E, Lutkenhaus J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol, 1993, 175: 1118-1125
[58]  58 Wang Y, Wu H, Jiang X R, et al. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng, 2014, 25: 183-193
[59]  59 Tan D, Wu Q, Chen J C, et al. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng, 2014, 26: 34-47
[60]  60 Wu H, Wang H, Chen J C, et al. Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Appl Microbiol Biotechnol, 2014, 98: 10013-10021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133