全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阻断Kv1.3通道可增强RAW264.7巨噬细胞的吞噬功能

DOI: 10.1007/s11427-015-4915-3, PP. 871-880

Keywords: Kv1.3通道,吞噬,巨噬细胞激活综合征,免疫调节

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在阐明电压门控性钾通道1.3(Kv1.3)在巨噬细胞吞噬功能中的作用.利用RAW264.7巨噬细胞吞噬鸡红细胞的半定量检测系统及吞噬异硫氰酸荧光素标记的大肠杆菌(E.coli)k-12的流式细胞术定量检测系统测定巨噬细胞的吞噬功能.研究发现,用海葵神经毒素(ShK)(100pmol/L)选择性阻断Kv1.3通道能显著增强处于静息状态的和被脂多糖(LPS)激活的RAW264.7巨噬细胞吞噬鸡红细胞的能力;ShK也可增强静息RAW264.7细胞吞噬大肠杆菌的能力,但由于LPS刺激吞噬的效应近乎饱和,ShK并不能进一步增加被LPS激活的RAW264.7细胞吞噬大肠杆菌的数量.ShK促进LPS激活的RAW264.7细胞释放一氧化氮(NO),但并不增加静息RAW264.7细胞的NO释放.ShK(100pmol/L)自身并不影响静息RAW264.7细胞释放细胞因子,但能抑制LPS激活的RAW264.7细胞释放白细胞介素-1b.ShK(100pmol/L)对RAW264.7细胞的活力无明显影响.RAW264.7细胞表达Kv1.3通道蛋白;LPS使RAW264.7细胞的Kv1.3蛋白表达下调,菲律宾菌素Ⅲ(小凹蛋白依赖性内吞途径抑制剂)使Kv1.3蛋白表达上调,细胞松弛素D对Kv1.3蛋白表达无明显影响.研究表明,RAW264.7细胞表达Kv1.3蛋白;阻断Kv1.3通道可增强RAW264.7细胞的吞噬能力和NO生成.结果提示,Kv1.3通道可能是RAW264.7细胞吞噬活动的负调节因子,有可能成为治疗巨噬细胞吞噬功能异常相关疾病的一个靶点.

References

[1]  4 王炯, 黄维琳, 汪诚, 等. 巨噬细胞吞噬凋亡中性粒细胞及吞噬诱导巨噬细胞死亡的实时动态观察. 中国科学:生命科学, 2014, 44: 571-577
[2]  5 闫莉, 谭晓秋, 陈文轩, 等. 自发性高血压大鼠血管对α1肾上腺素受体自身抗体的血管收缩作用敏感性增强. 中国科学:生命科学, 2014, 44: 562-570
[3]  6 Yan L, Tan X Q, Chen W X, et al. Enhanced vasoconstriction to a1 adrenoceptor autoantibody in spontaneously hypertensive rats. Sci China Life Sci, 2014, 57: 681-689
[4]  12 Demaurex N, El Chemaly A. Physiological roles of voltage-gated proton channels in leukocytes. J Physiol, 2010, 588: 4659-4665
[5]  13 Moreno C, Prieto P, Macías á, et al. Modulation of voltage-dependent and inward rectifier potassium channels by 15-epi-lipoxin-A4 in activated murine macrophages: implications in innate immunity. J Immunol, 2013, 191: 6136-6146
[6]  14 Vicente R, Escalada A, Soler C, et al. Pattern of Kvb subunit expression in macrophages depends upon proliferation and the mode of activation. J Immunol, 2005, 174: 4736-4744
[7]  15 Yang Y, Wang Y F, Yang X F, et al. Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res, 2013, 54: 34-43
[8]  16 Leanza L, Zoratti M, Gulbins E, et al. Induction of apoptosis in macrophages via Kv1.3 and Kv1.5 potassium channels. Curr Med Chem, 2012, 19: 5394-5404
[9]  17 Villalonga N, David M, Bielanska J. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem Pharmacol, 2010, 80: 858-866
[10]  18 Ell Wulff H, Castle N A, Pardo L A. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov, 2009, 8: 982-1001
[11]  19 Pardo L A. Voltage-gated potassium channels in cell proliferation. Physiology, 2004, 19: 285-292
[12]  20 Bradding P, Wulff H. The K+ channels KCa3.1 and Kv1.3 as novel targets for asthma therapy. Brit J Pharmacol, 2009, 157: 1330-1339
[13]  21 Lei X, Ma A, Xi Y, et al. Inhibitory effects of blocking voltage-dependent potassium channel 1.3 on human monocyte-derived macrophage differentiation into foam cells. J Peking Univ (Health Sci), 2006, 38: 257-261
[14]  22 Pennington M W, Harunur Rashid M, Tajhya R B, et al. A C-terminally amidated analogue of ShK is a potent and selective blocker of the voltage-gated potassium channel Kv1.3. FEBS Lett, 2012, 586: 3996-4001
[15]  25 Wang M, Zhao D, Yang Y, et al. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages. PLoS One, 2014, 9: e102785
[16]  26 Tartaro K, VanVolkenburg M, Wilkie D, et al. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat. J Immunotoxicol, 2014, 16: 1-8
[17]  27 Zhang M, Behrens E M, Atkinson T P, et al. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep, 2014, 16: 439
[18]  28 Hsieh C H, Nickel E A, Chen J, et al. Mechanism of the salutary effects of estrogen on Kupffer cell phagocytic capacity following trauma-hemorrhage: pivotal role of Akt activation. J Immunol, 2009, 182: 4406-4414
[19]  1 Cahalan M D, Chandy K G. The functional network of ion channels in T lymphocytes. Immunol Rev, 2009, 231: 59-87
[20]  2 Qiu M, Campbell T, Breit S. A potassium ion channel is involved in cytokine production. Clin Exp Immuonl, 2002, 130: 67-74
[21]  3 Villalonga N, David M, Bielanska J, et al. Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. J Gen Physiol, 2010, 135: 135-147
[22]  7 Vicente R, Escalada A, Coma M, et al. Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem, 2003, 278: 46307-46320
[23]  8 Vicente R, Escalada A, Villalonga N, et al. Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem, 2006, 281: 37675-37685
[24]  9 Lam J, Wulff H. The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Dev Res, 2011, 72: 573-584
[25]  10 Gao Y D, Hanley P J, Rinné S, et al. Calcium-activated K+ channel (K(Ca)3.1) activity during Ca2+ store depletion and store-operated Ca2+ entry in human macrophages. Cell Calcium, 2010, 48: 19-27
[26]  11 Tano J Y, Lee R H, Vazquez G. Macrophage function in atherosclerosis: potential roles of TRP channels. Channels (Austin), 2012, 6: 141-148
[27]  23 Matheu M P, Beeton C. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity, 2008, 29: 602-614
[28]  24 Datta K, Soni J L, Awadhiya R P, et al. Erythrophagocytosis in phenylhydrazine induced acute anaemia in chickens. Res Vet Sci, 1989, 47: 136-137
[29]  29 Zhou X, Yang W, Li J. Ca2+- and protein kinase C-dependent signaling pathway for nuclear factor-kB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-a production in lipopolysaccharide-stimulated rat peritoneal macrophages. J Biol Chem, 2006, 281: 31337-31347
[30]  30 Turner M D, Nedjai B, Hurst T, et al. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta, 2014, 1843: 2563-2582
[31]  31 Schulert G S, Grom A A. Macrophage activation syndrome and cytokine-directed therapies. Best Pract Res Clin Rheumatol, 2014, 28: 277-292
[32]  32 Striz I, Brabcova E, Kolesar L, et al. Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci (Lond), 2014, 126: 593-612
[33]  33 谷婧丽, 徐海飞, 韩晔华, 等. 超顺磁性三氧化二铁纳米粒子进入吞噬细胞RAW264.7 的途径、代谢归宿和生物学效应. 中国科学:生命科学, 2011, 41: 626-639
[34]  34 Kong L, Ge B X. MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Res, 2008, 18: 745-755
[35]  35 Martínez-Mármol R, Villalonga N, Solé L, et al. Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol, 2008, 217: 667-673
[36]  36 Vicente R. Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages J Biol Chem, 2003, 278: 46307-46320

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133