全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双稳态知觉的脑机制

DOI: 10.1360/N052015-00102, PP. 789-798

Keywords: 双稳态知觉,鲁宾花瓶图形,内克尔立方体图形,灰质体积,右侧额下回

Full-Text   Cite this paper   Add to My Lib

Abstract:

当对视觉输入的信息有多种解释时,人们的知觉状态会在这些解释之间随机切换.目前,这种多稳态或双稳态知觉的神经机制仍处于争论之中.本研究分别以鲁宾花瓶和内克尔立方体两种双稳态图形为对象来研究双稳态知觉在大脑结构上的机制.首先,通过计算两种双稳态知觉的切换频率,发现两者切换频率之间有正相关关系.在此基础上,通过计算两种知觉切换频率与大脑灰质体积的相关性,发现鲁宾花瓶和内克尔立方体图形的切换频率均和右侧额下回的灰质体积存在显著的负相关.本研究表明,不同双稳态知觉之间具有共同的神经基础,这一共同的基础位于右侧额下回,支持了自上而下的加工在双稳态知觉中具有重要的作用.

References

[1]  8 Muckli L, Kriegeskorte N, Lanfermann H, et al. Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and states. J Neurosci, 2002, 22: 166
[2]  9 Hesselmann G, Kell C A, Eger E, et al. Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci USA, 2008, 105: 10984-10989
[3]  10 Tong F, Nakayama K, Vaughan J T, et al. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 1998, 21: 753-759
[4]  11 Meenan J, Miller L A. Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia, 1994, 32: 1145-1149
[5]  12 Ricci C, Blundo C. Perception of ambiguous figures after focal brain lesions. Neuropsychologia, 1990, 28: 1163-1173
[6]  13 Windmann S, Wehrmann M, Calabrese P, et al. Role of the prefrontal cortex in attentional control over bistable vision. J Cognitive Neurosci, 2006, 18: 456-471
[7]  14 Britz J, Landis T, Michel C M. Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex, 2009, 19: 55-65
[8]  15 Kleinschmidt A, Büchel C, Zeki S, et al. Human brain activity during spontaneously reversing perception of ambiguous figures. P Roy Soc Lond B Bio, 1998, 265: 2427-2433
[9]  16 Sterzer P, Russ M O, Preibisch C, et al. Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 2002, 15: 908-916
[10]  17 Sterzer P, Kleinschmidt A. A neural basis for inference in perceptual ambiguity. Proc Natl Acad Sci USA, 2007, 104: 323-328
[11]  18 Knapen T, Brascamp J, Pearson J, et al. The role of frontal and parietal brain areas in bistable perception. J Neurosci, 2011, 31: 10293-10301
[12]  19 Lumer E D, Friston K J, Rees G. Neural correlates of perceptual rivalry in the human brain. Science, 1998, 280: 1930-1934
[13]  20 de Graaf T A, de Jong M C, Goebel R, et al. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision. Cereb Cortex, 2011, 21: 2322-2331
[14]  21 Kanai R, Carmel D, Bahrami B, et al. Structural and functional fractionation of right superior parietal cortex in bistable perception. Curr Biol, 2011, 21: R106-R107
[15]  22 Zaretskaya N, Thielscher A, Logothetis N K, et al. Disrupting parietal function prolongs dominance durations in binocular rivalry. Curr Biol, 2010, 20: 2106-2111
[16]  23 Kanai R, Bahrami B, Rees G. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr Biol, 2010, 20: 1626-1630
[17]  24 Pelli D G. The videotoolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 1997, 10: 437-442
[18]  25 Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage, 2007, 38: 95-113
[19]  26 Song X W, Dong Z Y, Long X Y, et al. Rest: a toolkit for restinγ-state functional magnetic resonance imaging data processing. PLoS One, 2011, 6: e25031
[20]  27 Leopold D A, Wilke M, Maier A, et al. Stable perception of visually ambiguous patterns. Nat Neurosci, 2002, 5: 605-609
[21]  28 Wang M, Arteaga D, He B J. Brain mechanisms for simple perception and bistable perception. Proc Natl Acad Sci USA, 2013, 110: E3350-E3359
[22]  29 Shannon R W, Patrick C J, Jiang Y, et al. Genes contribute to the switching dynamics of bistable perception. J Vision, 2011, 11: 57-67
[23]  30 Aron A R, Fletcher P C, Bullmore T, et al. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci, 2003, 6: 115-116
[24]  31 Aron A R, Robbins T W, Poldrack R A. Inhibition and the right inferior frontal cortex. Trends Cogn Sci, 2004, 8: 170-177
[25]  32 Hampshire A, Chamberlain S R, Monti M M, et al. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage, 2010, 50: 1313-1319
[26]  33 Chikazoe J, Konishi S, Asari T, et al. Activation of right inferior frontal gyrus during response inhibition across response modalities. J Cognitive Neurosci, 2007, 19: 69-80
[27]  34 Brass M, Cramon D Y V. Decomposing components of task preparation with functional magnetic resonance imaging. J Cognitive Neurosci, 2004, 16: 609-620
[28]  35 Brass M, von Cramon D Y. The role of the frontal cortex in task preparation. Cereb Cortex, 2002, 12: 908-914
[29]  36 Baldauf D, Desimone R. Neural mechanisms of object-based attention. Science, 2014, 344: 424-427
[30]  37 Pearson J, Brascamp J. Sensory memory for ambiguous vision. Trends Cogn Sci, 2008, 12: 334-341
[31]  38 Sterzer P, Rees G. A neural basis for percept stabilization in binocular rivalry. J Cognitive Neurosci, 2008, 20: 389-399
[32]  39 Weilnhammer V A, Ludwig K, Hesselmann G, et al. Frontoparietal cortex mediates perceptual transitions in bistable perception. J Neurosci, 2013, 33: 16009-16015
[33]  40 Khan Z U, Martín-Monta?ez E, Baxter M G. Visual perception and memory systems: from cortex to medial temporal lobe. Cell Mol Lif Sci, 2011, 68: 1737-1754
[34]  41 Ison M J. Selectivity and invariance for visual object perception. Front Biosci, 2008, 13: 4889-4903
[35]  42 Owen A M, Milner B, Petrides M, et al. A specific role for the right parahippocampal gyrus in the retrieval of object-location: a positron emission tomography study. J Cognitive Neurosci, 1996, 8: 588-602
[36]  43 Konrad K, Neufang S, Thiel C M, et al. Development of attentional networks: an fMRI study with children and adults. Neuroimage, 2005, 28: 429-439
[37]  44 Fan J. The activation of attentional networks. Neuroimage, 2005, 26: 471-479
[38]  45 Menon V, Uddin L Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct, 2010, 214: 655-667
[39]  46 Kanai R, Rees G. The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci, 2011, 12: 231-242
[40]  49 Corbetta M, Shulman G L. Spatial neglect and attention networks. Annu Rev Neurosci, 2011, 34: 569
[41]  50 Watanabe T, Masuda N, Megumi F, et al. Energy landscape and dynamics of brain activity during human bistable perception. Nat Commun, 2014, 5: 4765
[42]  47 Egner T. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control. J Cognitive Neurosci, 2011, 23: 3903-3913
[43]  48 Simmonds D J, Pekar J J, Mostofsky S H. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 2008, 46: 224-232
[44]  1 Long G M, Toppino T C. Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychol Bull, 2004, 130: 748
[45]  2 Blake R, Logothetis N K. Visual competition. Nat Rev Neurosci, 2002, 3: 13-21
[46]  3 Sterzer P, Kleinschmidt A, Rees G. The neural bases of multistable perception. Trends Cogn Sci, 2009, 13: 310-318
[47]  4 Mast F W, Kosslyn S M. Visual mental images can be ambiguous: insights from individual differences in spatial transformation abilities. Cognition, 2002, 86: 57-70
[48]  5 Polonsky A, Blake R, Braun J, et al. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci, 2000, 3: 1153-1159
[49]  6 Wunderlich K, Schneider K A, Kastner S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nat Neurosci, 2005, 8: 1595-1602
[50]  7 Hsieh P J, Caplovitz G, Tse P. Bistable illusory rebound motion: event-related functional magnetic resonance imaging of perceptual states and switches. Neuroimage, 2006, 32: 728-739

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133