8 Muckli L, Kriegeskorte N, Lanfermann H, et al. Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and states. J Neurosci, 2002, 22: 166
[2]
9 Hesselmann G, Kell C A, Eger E, et al. Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci USA, 2008, 105: 10984-10989
[3]
10 Tong F, Nakayama K, Vaughan J T, et al. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 1998, 21: 753-759
[4]
11 Meenan J, Miller L A. Perceptual flexibility after frontal or temporal lobectomy. Neuropsychologia, 1994, 32: 1145-1149
[5]
12 Ricci C, Blundo C. Perception of ambiguous figures after focal brain lesions. Neuropsychologia, 1990, 28: 1163-1173
[6]
13 Windmann S, Wehrmann M, Calabrese P, et al. Role of the prefrontal cortex in attentional control over bistable vision. J Cognitive Neurosci, 2006, 18: 456-471
[7]
14 Britz J, Landis T, Michel C M. Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex, 2009, 19: 55-65
[8]
15 Kleinschmidt A, Büchel C, Zeki S, et al. Human brain activity during spontaneously reversing perception of ambiguous figures. P Roy Soc Lond B Bio, 1998, 265: 2427-2433
[9]
16 Sterzer P, Russ M O, Preibisch C, et al. Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage, 2002, 15: 908-916
[10]
17 Sterzer P, Kleinschmidt A. A neural basis for inference in perceptual ambiguity. Proc Natl Acad Sci USA, 2007, 104: 323-328
[11]
18 Knapen T, Brascamp J, Pearson J, et al. The role of frontal and parietal brain areas in bistable perception. J Neurosci, 2011, 31: 10293-10301
[12]
19 Lumer E D, Friston K J, Rees G. Neural correlates of perceptual rivalry in the human brain. Science, 1998, 280: 1930-1934
[13]
20 de Graaf T A, de Jong M C, Goebel R, et al. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision. Cereb Cortex, 2011, 21: 2322-2331
[14]
21 Kanai R, Carmel D, Bahrami B, et al. Structural and functional fractionation of right superior parietal cortex in bistable perception. Curr Biol, 2011, 21: R106-R107
[15]
22 Zaretskaya N, Thielscher A, Logothetis N K, et al. Disrupting parietal function prolongs dominance durations in binocular rivalry. Curr Biol, 2010, 20: 2106-2111
[16]
23 Kanai R, Bahrami B, Rees G. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr Biol, 2010, 20: 1626-1630
[17]
24 Pelli D G. The videotoolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 1997, 10: 437-442
[18]
25 Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage, 2007, 38: 95-113
[19]
26 Song X W, Dong Z Y, Long X Y, et al. Rest: a toolkit for restinγ-state functional magnetic resonance imaging data processing. PLoS One, 2011, 6: e25031
[20]
27 Leopold D A, Wilke M, Maier A, et al. Stable perception of visually ambiguous patterns. Nat Neurosci, 2002, 5: 605-609
[21]
28 Wang M, Arteaga D, He B J. Brain mechanisms for simple perception and bistable perception. Proc Natl Acad Sci USA, 2013, 110: E3350-E3359
[22]
29 Shannon R W, Patrick C J, Jiang Y, et al. Genes contribute to the switching dynamics of bistable perception. J Vision, 2011, 11: 57-67
[23]
30 Aron A R, Fletcher P C, Bullmore T, et al. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci, 2003, 6: 115-116
[24]
31 Aron A R, Robbins T W, Poldrack R A. Inhibition and the right inferior frontal cortex. Trends Cogn Sci, 2004, 8: 170-177
[25]
32 Hampshire A, Chamberlain S R, Monti M M, et al. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage, 2010, 50: 1313-1319
[26]
33 Chikazoe J, Konishi S, Asari T, et al. Activation of right inferior frontal gyrus during response inhibition across response modalities. J Cognitive Neurosci, 2007, 19: 69-80
[27]
34 Brass M, Cramon D Y V. Decomposing components of task preparation with functional magnetic resonance imaging. J Cognitive Neurosci, 2004, 16: 609-620
[28]
35 Brass M, von Cramon D Y. The role of the frontal cortex in task preparation. Cereb Cortex, 2002, 12: 908-914
[29]
36 Baldauf D, Desimone R. Neural mechanisms of object-based attention. Science, 2014, 344: 424-427
[30]
37 Pearson J, Brascamp J. Sensory memory for ambiguous vision. Trends Cogn Sci, 2008, 12: 334-341
[31]
38 Sterzer P, Rees G. A neural basis for percept stabilization in binocular rivalry. J Cognitive Neurosci, 2008, 20: 389-399
[32]
39 Weilnhammer V A, Ludwig K, Hesselmann G, et al. Frontoparietal cortex mediates perceptual transitions in bistable perception. J Neurosci, 2013, 33: 16009-16015
[33]
40 Khan Z U, Martín-Monta?ez E, Baxter M G. Visual perception and memory systems: from cortex to medial temporal lobe. Cell Mol Lif Sci, 2011, 68: 1737-1754
[34]
41 Ison M J. Selectivity and invariance for visual object perception. Front Biosci, 2008, 13: 4889-4903
[35]
42 Owen A M, Milner B, Petrides M, et al. A specific role for the right parahippocampal gyrus in the retrieval of object-location: a positron emission tomography study. J Cognitive Neurosci, 1996, 8: 588-602
[36]
43 Konrad K, Neufang S, Thiel C M, et al. Development of attentional networks: an fMRI study with children and adults. Neuroimage, 2005, 28: 429-439
[37]
44 Fan J. The activation of attentional networks. Neuroimage, 2005, 26: 471-479
[38]
45 Menon V, Uddin L Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct, 2010, 214: 655-667
[39]
46 Kanai R, Rees G. The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci, 2011, 12: 231-242
[40]
49 Corbetta M, Shulman G L. Spatial neglect and attention networks. Annu Rev Neurosci, 2011, 34: 569
[41]
50 Watanabe T, Masuda N, Megumi F, et al. Energy landscape and dynamics of brain activity during human bistable perception. Nat Commun, 2014, 5: 4765
[42]
47 Egner T. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control. J Cognitive Neurosci, 2011, 23: 3903-3913
[43]
48 Simmonds D J, Pekar J J, Mostofsky S H. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 2008, 46: 224-232
[44]
1 Long G M, Toppino T C. Enduring interest in perceptual ambiguity: alternating views of reversible figures. Psychol Bull, 2004, 130: 748
[45]
2 Blake R, Logothetis N K. Visual competition. Nat Rev Neurosci, 2002, 3: 13-21
[46]
3 Sterzer P, Kleinschmidt A, Rees G. The neural bases of multistable perception. Trends Cogn Sci, 2009, 13: 310-318
[47]
4 Mast F W, Kosslyn S M. Visual mental images can be ambiguous: insights from individual differences in spatial transformation abilities. Cognition, 2002, 86: 57-70
[48]
5 Polonsky A, Blake R, Braun J, et al. Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nat Neurosci, 2000, 3: 1153-1159
[49]
6 Wunderlich K, Schneider K A, Kastner S. Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nat Neurosci, 2005, 8: 1595-1602
[50]
7 Hsieh P J, Caplovitz G, Tse P. Bistable illusory rebound motion: event-related functional magnetic resonance imaging of perceptual states and switches. Neuroimage, 2006, 32: 728-739