全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

孤独症的神经生物学研究

DOI: 10.1360/052014-123, PP. 725-729

Keywords: 孤独症,基因组关联分析,拷贝数变异,突触,神经发育,动物模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

孤独症是一种严重的神经发育性疾病,主要症状有重复刻板行为、社交沟通障碍及语言发育迟缓等,多发于2~5岁幼儿中,症状往往伴随患者终生.经过长期的遗传学研究,基因的变异包括点突变与大片段缺失及重复在孤独症的发病因素中占到了很大的比例.但是目前并未发现有某些少数主效基因占到孤独症遗传变异的主要地位,提示孤独症是一种多基因致病,并与环境因素密切相关的复杂疾病.对孤独症的神经生物学研究揭示,在孤独症中发生突变的基因多编码影响神经系统发育及突触传导的重要蛋白,因此神经发育及突触传导的异常很可能是导致孤独症的重要因素.目前在多种模式生物,包括大小鼠及非人灵长类中构建了基于基因操作的孤独症模型.随着基础研究的不断深入,最终将揭示孤独症致病因素并找到有效干预方法.

References

[1]  1 Kanner L. Irrelevant and metaphorical language in early infantile autism. Am J Psychiat, 1946, 103: 242-246
[2]  2 Lai M C, Lombardo M V, Baron-Cohen S. Autism. Lancet, 2014, 383: 896-910
[3]  3 Wang K, Zhang H T, Ma D Q, et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 2009, 459: 528-533
[4]  4 Weiss L A, Arking D E, Consortium J H A. A genome-wide linkage and association scan reveals novel loci for autism. Nature, 2009, 461: 802-808
[5]  5 Zoghbi H Y, Bear M F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Hard Perspect Biol, 2012, 4: a009886
[6]  6 Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science, 2007, 316: 445-449
[7]  7 Gong X H, Jia M X, Ruan Y, et al. Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B, 2004, 127B: 113-116
[8]  8 Xia K, Guo H, Hu Z, et al. Common genetic variants on 1p13.2 associate with risk of autism. Mol Psychiatry, 2013, doi: 10.1038/mp.2013.146
[9]  9 Tabuchi K, Blundell J, Etherton M R, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 2007, 318: 71-76
[10]  10 Jamain S, Radyushkin K, Hammerschmidt K, et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci USA, 2008, 105: 1710-1715
[11]  11 Sun M K, Xing G L, Yuan L D, et al. Neuroligin 2 is required for synapse development and function at the drosophila neuromuscular junction. J Neurosci, 2011, 31: 687-699
[12]  12 Li Y, Zhou Z K, Zhang X W, et al. Drosophila neuroligin 4 regulates sleep through modulating GABA transmission. J Neurosci, 2013, 33: 15545-15554
[13]  13 Tian Y, Li T, Sun M K, et al. Neurexin regulates visual function via mediating retinoid transport to promote rhodopsin maturation. Neuron, 2013, 77: 311-322
[14]  14 Jamain S, Quach H, Betancur C, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genet, 2003, 34: 27-29
[15]  15 Peca J, Feliciano C, Ting J T, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011, 472: 437-442
[16]  16 Wang X M, Mccoy P A, Rodriguiz R M, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet, 2011, 20: 3093-3108
[17]  17 Alarcon M, Abrahams B S, Stone J L, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet, 2008, 82: 150-159
[18]  18 Penagarikano O, Abrahams B S, Herman E I, et al. Absence of CNTNAP2 Leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 2011, 147: 235-246
[19]  19 Karayannis T, Au E, Patel J C, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature, 2014, 511: 236-240
[20]  20 Ramocki M B, Peters S U, Tavyev Y J, et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol, 2009, 66: 771-782
[21]  21 Lewis J D, Meehan R R, Henzel W J, et al. Purification, sequence, and cellular-localization of a novel chromosomal protein that binds to methylated DNA. Cell, 1992, 69: 905-914
[22]  22 Amir R E, Van den Veyver I B, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 1999, 23: 185-188
[23]  23 Chao H T, Zoghbi H Y, Rosenmund C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 2007, 56: 58-65
[24]  24 Samaco R C, Mandel-Brehm C, Mcgraw C M, et al. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet, 2012, 44: 206-211
[25]  25 Chen W G, Chang Q, Lin Y X, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MECP2. Science, 2003, 302: 885-889
[26]  26 Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 2003, 302: 890-893
[27]  27 Cheng T L, Wang Z Z, Liao Q M, et al. MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell, 2014, 28: 547-560
[28]  28 Smith S E P, Li J, Garbett K, et al. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci, 2007, 27: 10695-10702
[29]  29 Hsiao E Y, Mcbride S W, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155: 1451-1463
[30]  30 Naviaux J C, Schuchbauer M A, Li K, et al. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy. Transl Psychiatry, 2014, 4:e400
[31]  31 Silverman J L, Yang M, Lord C, et al. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci, 2010, 11: 490-502
[32]  32 Liu H L, Chen Y C, Niu Y Y, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell, 2014, 14: 323-328
[33]  33 Liu Z, Zhou X, Zhu Y, et al. Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neurosci Bull, 2014, 30: 381-386

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133