24 Nabia?ek E, Wańha W, Kula D, et al. Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. Minerva Cardioangiol, 2013, 61: 627-637
[2]
25 van Rooij E, Sutherland L B, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007, 316: 575-579
[3]
26 Zile M R, Mehurg S M, Arroyo J E, et al. Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients after myocardial infarction. Circ Cardiovasc Genet, 201, 4: 614-619
[4]
27 Bostjancic E, Zidar N, Stajer D, et al. MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology, 2010, 115: 163-169
[5]
39 Du F, Yu F, Wang Y, et al. MicroRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2014, 34: 759-767
[6]
40 Wei Y, Nazari-Jahantigh M, Chan L, et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation, 2013, 127: 1609-1619
[7]
41 Taganov K D, Boldin M P, Chang K J, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA, 2006, 103: 12481-12486
[8]
44 Pinto R, De Summa S, Pilato B, et al. DNA methylation and miRNAs regulation in hereditary breast cancer: epigenetic changes, players in transcriptional and post-transcriptional regulation in hereditary breast cancer. Curr Mol Med, 2014, 14: 45-57
[9]
45 Wang S, Shu J Z, Cai Y, et al. Establishment and characterization of MTDH knockdown by artificial MicroRNA interference—functions as a potential tumor suppressor in breast cancer. Asian Pac J Cancer Prev, 2012, 13: 2813-2818
[10]
46 Guo H M, Zhang X Q, Xu C H, et al. Inhibition of invasion and metastasis of gastric cancer cells through snail targeting artificial microRNA interference. Asian Pac J Cancer Prev, 2011, 12: 3433-3438
[11]
47 Cai S R, Wang Z, Chen C Q, et al. Role of silencing phosphatase of regenerationg liver-3 expression by microRNA interference in the growth of gastric cancer. Chin Med J, 2008, 121: 2534-2538
[12]
48 Wang Z, He Y L, Cai S R, et al. Expression and prognostic impact of PRL-3 in lymph node metastasis of gastric cancer: its molecular mechanism was investigated using artificial microRNA interference. Int J Cancer, 2008, 123: 1439-1447
[13]
49 Qin Y, Yu Y, Dong H, et al. MicroRNA 21 inhibits left ventricular remodeling in the early phase of rat model with ischemia-reperfusion injury by suppressing cell apoptosis. Int J Med Sci, 2012, 9: 413-423
[14]
50 Wei Y, Nazari-Jahantigh M, Neth P, et al. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol, 2013, 33: 449-454
2 Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294: 853-858
[20]
3 Panda A C, Sahu I, Kulkarni S D, et al. miR-196b-mediated translation regulation of mouse insulin2 via the 5''UTR. PLoS One, 2014, 9: e101084
[21]
4 Place R F, Li L C, Pookot D, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA, 2008, 105: 1608-1613
[22]
5 ?rom U A, Nielsen F C, Lund A H. MicroRNA-10a binds the 5''UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell, 2008, 30: 460-471
[23]
6 Sluijter J P, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol, 2010, 30: 859-868
[24]
7 Kota J, Chivukula R R, O''Donnell K A, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009, 137: 1005-1017
[25]
8 Lin C J, Gong H Y, Tseng H C, et al. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun, 2008, 375: 315-320
[26]
9 Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2005, 37: 766-770
11 Go A S, Mozaffarian D, Roger V L, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation, 2014, 129: e28-e292
[29]
12 Deddens J C, Colijn J M, Oerlemans M I, et al. Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome. J Cardiovasc Transl Res, 2013, 6: 884-898
[30]
13 Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet, 2011, 4: 446-454
[31]
14 D''Alessandra Y, Devanna P, Limana F, et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J, 2010, 31: 2765-2773
[32]
15 Gidl?f O, Smith J G, Miyazu K, et al. Circulating cardio-enriched microRNAs are associated with lonγ-term prognosis following myocardial infarction. BMC Cardiovasc Disord, 2013,13: 12
[33]
16 Ai J, Zhang R, Li Y, et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun, 2010, 391: 73-77
[34]
17 Cheng Y, Tan N, Yang J, et al. A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci, 2010, 119: 87-95
[35]
18 Gidl?f O, Andersson P, van der Pals J, et al. Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology, 2011, 118: 217-226
[36]
19 Long G, Wang F, Duan Q, et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci, 2012, 8: 811-818
[37]
20 Wang G K, Zhu J Q, Zhang J T, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J, 2010, 31: 659-666
[38]
21 Widera C, Gupta S K, Lorenzen J M, et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol, 2011, 51: 872-875
[39]
22 Oerlemans M I, Mosterd A, Dekker M S, et al. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med, 2012, 4: 1176-1185
[40]
23 Olivieri F, Antonicelli R, Lorenzi M, et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol, 2013, 167: 531-536
[41]
28 Chen J F, Mandel E M, Thomson J M, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006, 38: 228-233
[42]
29 Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem, 2010, 56: 1183-1185
[43]
30 Hosoda T, Zheng H, Cabral-da-Silva M, et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation, 2011, 123: 1287-1296
[44]
31 Devaux Y, Vausort M, Goretti E, et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem, 2012, 58: 559-567
[45]
32 Fish J E, Santoro M M, Morton S U, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell, 2008, 15: 272-284
[46]
33 Kuhnert F, Mancuso M R, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 2008, 135: 3989-3993
[47]
34 Wang J, Yu G. A systems biology approach to characterize biomarkers for blood stasis syndrome of unstable angina patients by integrating microRNA and messenger RNA expression profiling. Evid Based Complement Alternat Med, 2013, 2013: 510208
[48]
35 Sun X, Zhang M, Sanagawa A, et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thromb J, 2012, 10: 16
[49]
36 Yu X Y, Chen J Y, Zheng Z W, et al. Plasma miR-126 as a potential marker predicting major adverse cardiac events in dual antiplatelet-treated patients after percutaneous coronary intervention. EuroIntervention, 2013, 9: 546-554
[50]
37 Konstandin M H, Aksoy H, Wabnitz G H, et al. Beta2-integrin activation on T cell subsets is an independent prognostic factor in unstable angina pectoris. Basic Res Cardiol, 2009, 104: 341-351
[51]
38 Zhang E, Wu Y. Dual effects of miR-155 on macrophages at different stages of atherosclerosis: LDL is the key? Med Hypotheses, 2014, 83: 74-78