全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

孤独症的遗传学和神经生物学研究进展

DOI: 10.1360/052010-370, PP. 717-724

Keywords: 孤独症,分子遗传学,表观遗传学,神经生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

孤独症是一种遗传度高达90%的多基因复杂疾病,具有典型的遗传和表型异质性,并受到环境因素的影响.本文对近年来孤独症遗传学、表观遗传学和神经生物学3方面的进展进行了简要综述.细胞遗传学法、全基因组扫描及候选基因法是孤独症分子遗传学研究中较为常见的3种方法.虽然应用上述方法发现了一些孤独症易感基因集中的染色体区域,但确切的致病或易感基因仍未被检出.因而,越来越多的关注被集中于如何提高样本同质性、如何将遗传学机制与环境作用相联系、如何提高微效基因的检出率上.在提高样本同质性方面,功能核磁共振及交叉表型的研究正在进行.同时,表观遗传学的研究可以联系遗传与环境因素,从而更好地解释孤独症的发病机制.目前,对染色体上表观遗传与遗传共同调控的区域,如7号和15号染色体长臂,进行了大量研究.在神经生物学方面,神经递质、神经发育及神经免疫学假说均有一定的进展.其中,针对神经递质的研究主要集中于5-羟色胺、γ-氨基丁酸及谷氨酸.在神经发育假说方面,神经发育相关蛋白,如肝细胞生长因子、神经生长因子及Reelin,研究得较为深入.

References

[1]  14 Makedonski K, Abuhatzira L, Kaufman Y, et al. MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression. Hum Mol Genet, 2005, 14: 1049-1058
[2]  15 Penagarikano O, Mulle J G, Warren S T. The pathophysiology of fragile X syndrome. Annu Rev Genomics Hum Genet, 2007, 8: 109-129
[3]  16 Mazzocco M M, Pulsifer M, Fiumara A, et al. Brief report: autistic behaviors among children with fragile X or Rett syndrome: implications for the classification of pervasive developmental disorder. J Autism Dev Disord, 1998, 28: 321-328
[4]  17 Skuse D H. Imprinting, the X-chromosome, and the male brain: explaining sex differences in the liability to autism. Pediatr Res, 2000, 47: 9-16
[5]  18 Andreu A, de la Rosa M, Cabero L. Justification of a prevention policy of perinatal disease by group B streptococci (GBS). Recommendations. Enferm Infecc Microbiol Clin, 1999, 17: 138-140
[6]  19 Thomas N S, Sharp A J, Browne C E, et al. Xp deletions associated with autism in three females. Hum Genet, 1999, 104: 43-48
[7]  20 Killian J K. Genomic imprinting: parental differentiation of the genome. Atlas Genet Cytogenet Oncol Haematol, 2005. http://AtlasGeneticsOncology.org/Deep/GenomImprintID20032.html
[8]  21 Gadia C A, Tuchman R, Rotta N T. Autism and pervasive developmental disorders. J Pediatr, 2004, 2: S83-S94
[9]  22 Wolpert C M, Menold M M, Bass M P, et al. Three probands with autistic disorder and isodicentric chromosome 15. Am J Med Genet, 2000, 96: 365-372
[10]  23 Sutcliffe J S, Nurmi E L, Lombroso P J. Genetics of childhood disorders: XLVII. Autism, part 6: duplication and inherited susceptibility of chromosome 15q11-q13 genes in autism. J Am Acad Child Adolesc Psychiatry, 2003, 42: 253-256
[11]  24 Peters S U, Beaudet A L, Madduri N, et al. Autism in Angelman syndrome: implications for autism research. Clin Genet, 2004, 66: 530-536
[12]  25 Herzing L B, Kim S J, Cook E H Jr, et al. The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet, 2001, 68: 1501-1505
[13]  26 Boccaccio I, Glatt-Deeley H, Watrin F, et al. The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet, 1999, 8: 2497-2505
[14]  27 Courchesne E, Redcay E, Kennedy D P. The autistic brain: birth through adulthood. Curr Opin Neurol, 2004, 17: 489-496
[15]  28 Baron-Cohen S, Belmonte M K. Autism: a window onto the development of the social and the analytic brain. Annu Rev Neurosci, 2005, 28: 109-126
[16]  29 Courchesne E, Karns C M, Davis H R, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 2001, 57: 245-254
[17]  30 Herbert M R, Ziegler D A, Deutsch C K, et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain, 2005, 128: 213-226
[18]  31 Bauman M L, Kemper T L. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci, 2005, 23: 183-187
[19]  32 Just M A, Cherkassky V L, Keller T A, et al. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 2004, 127: 1811-1821
[20]  33 Bachevalier J. Medial temporal lobe structures and autism: a review of clinical and experimental findings. Neuropsychologia, 1994, 32: 627-648
[21]  34 Manent J B, Represa A. Neurotransmitters and brain maturation: early paracrine actions of GABA and glutamate modulate neuronal migration. Neuroscientist, 2007, 13: 268-279
[22]  35 Polleux F, Lauder J M. Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res Rev, 2004, 10: 303-317
[23]  36 Chugani D C. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry, 2002, 7: S16-S17
[24]  37 Chugani D C, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol, 1999, 45: 287-295
[25]  38 Chugani D C, Muzik O, Rothermel R, et al. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol, 1997, 42: 666-669
[26]  39 Anderson G M, Horne W C, Chatterjee D, et al. The hyperserotonemia of autism. Ann NY Acad Sci, 1990, 600: 331-340
[27]  40 Persico A M, Altamura C, Calia E, et al. Serotonin depletion and barrel cortex development: impact of growth impairment vs. serotonin effects on thalamocortical endings. Cereb Cortex, 2000, 10: 181-191
[28]  41 Blue M E, Johnston M V, Moloney C B, et al. Autism. Totowa: Humana Press, 2008. 111-132
[29]  42 Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002, 3: 728-739
[30]  43 Collins A L, Ma D, Whitehead P L, et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics, 2006, 7: 167-174
[31]  44 Casanova M F, Buxhoeveden D, Gomez J. Disruption in the inhibitory architecture of the cell minicolumn: implications for autisim. Neuroscientist, 2003, 9: 496-507
[32]  45 Derkach V A, Oh M C, Guire E S, et al. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci, 2007, 8: 101-113
[33]  46 Courchesne E, Pierce K, Schumann C M, et al. Mapping early brain development in autism. Neuron, 2007, 56: 399-413
[34]  47 Neves-Pereira M, Mundo E, Muglia P, et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet, 2002, 71: 651-655
[35]  48 Angelucci F, Brene S, Mathe A A. BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry, 2005, 10: 345-352
[36]  49 Quattrocchi C C, Wannenes F, Persico A M, et al. Reelin is a serine protease of the extracellular matrix. J Biol Chem, 2002, 277: 303-309
[37]  50 Knuesel I. Reelin-mediated signaling in neuropsychiatric and neurodegenerative diseases. Prog Neurobiol, 2010, 91: 257-274
[38]  51 Tamura Y, Kunugi H, Ohashi J, et al. Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry, 2007, 12: 593-600
[39]  52 Sudhof T C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 2008, 455: 903-911
[40]  53 Graf E R, Zhang X, Jin S X, et al. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 2004, 119: 1013-1026
[41]  54 Carroll L S, Owen M J. Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med, 2009, 1: 102
[42]  55 Pardo C A, Eberhart C G. The neurobiology of autism. Brain Pathol, 2007, 17: 434-447
[43]  56 Zhou J, Blundell J, Ogawa S, et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci, 2009, 29: 1773-1783
[44]  57 Gregorian C, Nakashima J, Le Belle J, et al. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci, 2009, 29: 1874-1886
[45]  58 Fields R D, Stevens-Graham B. New insights into neuron-glia communication. Science, 2002, 298: 556-562
[46]  59 Pardo C A, Vargas D L, Zimmerman A W. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry, 2005, 17: 485-495
[47]  1 Sebat J, Lakshmi B, Malhotra D, et al. Strong association of de novo copy number mutations with autism. Science, 2007, 316: 445-449
[48]  2 Geschwind D H. Advances in autism. Annu Rev Med, 2009, 60: 367-380
[49]  3 Bailey A, Le Couteur A, Gottesman I, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med, 1995, 25: 63-77
[50]  4 Levitt P, Campbell D B. The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J Clin Invest, 2009, 119: 747-754
[51]  5 Trottier G, Srivastava L, Walker C D. Etiology of infantile autism: a review of recent advances in genetic and neurobiological research. J Psychiatry Neurosci, 1999, 24: 103-115
[52]  6 Schanen N C. Epigenetics of autism spectrum disorders. Hum Mol Genet, 2006, 15: R138-R150
[53]  7 Dauwerse J G, Ruivenkamp C A, Hansson K, et al. A complex chromosome 7q rearrangement identified in a patient with mental retardation, anxiety disorder, and autistic features. Am J Med Genet A, 2010, 152: 427-433
[54]  8 Nurmi E L, Amin T, Olson L M, et al. Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry, 2003, 8: 624-634
[55]  9 Matuszek G, Talebizadeh Z. Autism Genetic Database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites. BMC Med Genet, 2009, 10: 102
[56]  10 McCauley J L, Li C, Jiang L, et al. Genome-wide and ordered-subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet, 2005, 6: 1
[57]  11 Just M A, Cherkassky V L, Keller T A, et al. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex, 2007, 17: 951-961
[58]  12 Brambilla P, Hardan A, di Nemi S U, et al. Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull, 2003, 61: 557-569
[59]  13 Abrahams B S, Geschwind D H. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet, 2008, 9: 341-355

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133