1 Rinn J L, Bondre C, Gladstone H B, et al. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet, 2006, 2: e119
[2]
2 Chang H Y, Chi J T, Dudoit S, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA, 2002, 99: 12877-12882
[3]
3 Wang K C, Helms J A, Chang H Y. Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol, 2009, 19: 268-275
[4]
4 Duboule D. The rise and fall of Hox gene clusters. Development, 2007, 134: 2549-2560
[5]
5 Spitz F, Gonzalez F, Duboule D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell, 2003, 113: 405-417
[6]
6 Sharpe J, Nonchev S, Gould A, et al. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J, 1998, 17: 1788-1798
[7]
7 Kmita M, Duboule D. Organizing axes in time and space; 25 years of colinear tinkering. Science, 2003, 301: 331-333
[8]
8 Kondo T, Duboule D. Breaking colinearity in the mouse HoxD complex. Cell, 1999, 97: 407-417
[9]
9 Roelen B A, de Graaff W, Forlani S, et al. Hox cluster polarity in early transcriptional availability: a high order regulatory level of clustered Hox genes in the mouse. Mech Dev, 2002, 119: 81-90
[10]
10 Fraser J, Rousseau M, Shenker S, et al. Chromatin conformation signatures of cellular differentiation. Genome Biol, 2009, 10: R37
[11]
11 Rousseau M, Crutchley J L, Miura H, et al. Hox in motion: tracking HoxA cluster conformation during differentiation. Nucleic Acids Res, 2014, 42: 1524-1540
[12]
12 Chambeyron S, Bickmore W A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev, 2004, 18: 1119-1130
[13]
13 Noordermeer D, Leleu M, Splinter E, et al. The dynamic architecture of Hox gene clusters. Science, 2011, 334: 222-225
[14]
14 Chambeyron S, Da Silva N R, Lawson K A, et al. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development, 2005, 132: 2215-2223
[15]
15 Phillips J E, Corces V G. CTCF: master weaver of the genome. Cell, 2009, 137: 1194-1211
[16]
16 Parelho V, Hadjur S, Spivakov M, et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell, 2008, 132: 422-433
[17]
17 Gause M, Schaaf C A, Dorsett D. Cohesin and CTCF: cooperating to control chromosome conformation? Bioessays, 2008, 30: 715-718
[18]
18 Xu M, Zhao G N, Lv X, et al. CTCF controls HOXA cluster silencing and mediates PRC2-repressive higher-order chromatin structure in NT2/D1 cells. Mol Cell Biol, 2014, 34: 3867-3879
[19]
19 Li M, Ti D, Han W, et al. Microenvironment-induced myofibroblast-like conversion of engrafted keratinocytes. Sci China Life Sci, 2014, 57: 209-220
[20]
20 Liu X, Huang Q, Li F, et al. Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression. Sci China Life Sci, 2014, 57: 867-875
[21]
21 Rinn J L, Kertesz M, Wang J K, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007, 129: 1311-1323
[22]
22 Rubio E D, Reiss D J, Welcsh P L, et al. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA, 2008, 105: 8309-8314
[23]
23 Kim Y J, Cecchini K R, Kim T H. Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene a locus. Proc Natl Acad Sci USA, 2011, 108: 7391-7396
[24]
24 Yusufzai T M, Felsenfeld G. The 5''-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc Natl Acad Sci USA, 2004, 101: 8620-8624
[25]
25 Yusufzai T M, Tagami H, Nakatani Y, et al. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell, 2004, 13: 291-298
[26]
26 Hou C, Dale R, Dean A. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci USA, 2010, 107: 3651-3656