21 Urgen B A, Plank M, Ishiguro H, et al. EEG theta and Mu oscillations during perception of human and robot actions. Front Neurorobot, 2013, 7: 19
[4]
22 ?ygierewicz J, Durka P J, Klekowicz H, et al. Computationally efficient approaches to calculating significant ERD/ERS changes in the time-frequency plane. J Neurosci Methods, 2005, 145: 267-276
[5]
23 Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol, 1979, 46: 138-146
[6]
24 Kalcher J, Pfurtscheller G. Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalogr Clin Neurophysiol, 1995, 94: 381-384
[7]
25 Luck S J. 事件相关电位基础. 范思陆, 丁玉珑, 等译. 上海: 华东师范大学出版社, 2009
[8]
26 Sinkkonen J, Tiitinen H, N??t?nen R. Gabor filters: an informative way for analysing event-related brain activity. J neurosci Meth, 1995, 56: 99-104
[9]
27 Torrence C, Compo G P. A practical guide to wavelet analysis. B Am Meteorol Soc, 1998, 79: 61-78
[10]
28 Tallon-Baudry C, Bertrand O. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci, 1999, 3: 151-162
[11]
29 Bra?i? M, Stefanovska A. Wavelet-based analysis of human blood-flow dynamics. Bull Math Biol, 1998, 60: 919-935
[12]
30 Welch P D. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust, 1967, 15: 70-73
[13]
31 Graimann B, Pfurtscheller G. Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain. Prog Brain Res, 2006, 159: 79-97
[14]
32 Pfurtscheller G, Lopes da Silva F H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol, 1999, 110: 1842-1857
[15]
33 Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol, 1977, 42: 817-826
[16]
34 Pfurtscheller G, Neuper C, Flotzinger D, et al. EEG-based discrimination between imagination of right and left hand movement. Clin Neurophysiol, 1997, 103: 642-651
[17]
35 Muthukumaraswamy S D, Johnson B W. Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol, 2004, 115: 1760-1766
[18]
36 Beisteiner R, H?llinger P, Lindinger G, et al. Mental representations of movements. Brain potentials associated with imagination of hand movements. Electroencephalogr Clin neurophysiol, 1995, 96: 183-193
[19]
37 Frenkel-Toledo S, Bentin S, Perry A, et al. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression. NeuroImage, 2014, 87: 127-137
[20]
38 Perry A, Bentin S. Mirror activity in the human brain while observing hand movements: a comparison between EEG desynchronization in the mu-range and previous fMRI results. Brain Res, 2009, 1282: 126-132
[21]
39 Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex, 2009, 19: 1239-1255
[22]
40 Aziz-Zadeh L, Koski L, Zaidel E, et al. Lateralization of the human mirror neuron system. J Neurosci, 2006, 26: 2964-2970
[23]
41 Neuper C, Scherer R, Reiner M, et al. Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res, 2005, 25: 668-677
[24]
42 Nam C S, Jeon Y, Kim Y J, et al. Movement imagery-related lateralization of event-related (de) synchronization (ERD/ERS): motor-imagery duration effects. Clin Neurophysiol, 2011, 122: 567-577
[25]
43 Pfurtscheller G, Neuper C, Brunner C, et al. Beta rebound after different types of motor imagery in man. Neurosci Lett, 2005, 378: 156-159
[26]
44 Pfurtscheller G, Lopes da Silva F H. Event-related desynchronization. Handbook of electroencephalography and clinical neurophysiology, 1999, 6: 51-65
[27]
45 Francuz P, Zapa?a D. The suppression of the m rhythm during the creation of imagery representation of movement. Neurosci Lett, 2011, 495: 39-43
[28]
46 Cochin S, Barthelemy C, Lejeune B, et al. Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol, 1998, 107: 287-295
[29]
47 Heimann K, Umilta M A, Guerra M, et al. Moving mirrors: a high-density EEG study investigating the effect of camera movements on motor cortex activation during action observation. J Cogn Neurosci, 2014, 26: 2087-2101
[30]
48 Calvo-Merino B, Glaser D E, Grèzes J, et al. Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex, 2005, 15: 1243-1249
[31]
49 Calvo-Merino B, Grèzes J, Glaser D E, et al. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol, 2006, 16: 1905-1910
[32]
50 Cross E S, Hamilton A F C, Grafton S T. Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 2006, 31: 1257-1267
[33]
51 Oberman L M, McCleery J P, Hubbard E M, et al. Developmental changes in mu suppression to observed and executed actions in autism spectrum disorders. Soc Cogn Affect Neurosci, 2013, 8: 300-304
[34]
1 Berends H I, Wolkorte R, Ijzerman M J, et al. Differential cortical activation during observation and observation-and-imagination. Exp Brain Res, 2013, 229: 337-345
[35]
2 Neuper C, Scherer R, Wriessnegger S, et al. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin Neurophysiol, 2009, 120: 239-247
[36]
3 Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation and verb generation of actions: a meta-analysis. Hum Brain Mapp, 2001, 12: 1-19
[37]
4 Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 2001, 14: S103-S109
[38]
5 Gazzaniga M S, Ivry R B, Mangun G R. 认知神经科学: 关于心智的生物学. 周晓林, 高定国, 等译. 北京: 中国轻工业出版社, 2013. 223-269
[39]
6 Lapenta O M, Boggio P S. Motor network activation during human action observation and imagery: mu rhythm EEG evidence on typical and atypical neurodevelopment. Res Autism Spectr Disord, 2014, 8: 759-766
[40]
7 Pulvermüller F, Fadiga L. Active perception: sensorimotor circuits as a cortical basis for language. Nat Rev Neurosci, 2010, 11: 351-360
[41]
8 Buccino G, Binkofski F, Riggio L. The mirror neuron system and action recognition. Brain Lang, 2004, 89: 370-376
[42]
9 Nakano H, Osumi M, Ueta K, et al. Changes in electroencephalographic activity during observation, preparation, and execution of a motor learning task. Int J Neurosci, 2013, 123: 866-875
[43]
10 Avanzini P, Fabbri-Destro M, Dalla Volta R, et al. The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. PLoS One, 2012, 7: e37534
[44]
11 Fecteau S, Carmant L, Tremblay C, et al. A motor resonance mechanism in children? Evidence from subdural electrodes in a 36-month-old child. Neuroreport, 2004, 15: 2625-2627
[45]
12 Lepage J F, Théoret H. EEG evidence for the presence of an action observation-execution matching system in children. Eur J Neurosci, 2006, 23: 2505-2510
[46]
13 Celnik P, Stefan K, Hummel F, et al. Encoding a motor memory in the older adult by action observation. Neuroimage, 2006, 29: 677-684
[47]
14 Heida T, Poppe N R, de Vos C C, et al. Event-related mu-rhythm desynchronization during movement observation is impaired in Parkinson''s disease. Clin Neurophysiolo, 2014, 125: 1819-1825
[48]
15 Nedelko V, Hassa T, Hamzei F, et al. Age independent activation in areas of the mirror neuron system during action observation and action imagery: a fMRI study. Restor Neurol Neurosci, 2010, 28: 737-747
[49]
16 Franceschini M, Ceravolo M G, Agosti M, et al. Clinical relevance of action observation in upper-limb stroke rehabilitation a possible role in recovery of functional dexterity. A randomized clinical trial. Neurorehabil Neural Repair, 2012, 26: 456-462
[50]
17 Piron L, Turolla A, Agostini M, et al. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med, 2009, 41: 1016-1102
[51]
18 Sharma N, Pomeroy V M, Baron J C. Motor imagery: a backdoor to the motor system after stroke? Stroke, 2006, 37: 1941-1952