52 MacDonald A W, Cohen J D, Stenger V A, et al. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 2000, 288: 1835-1838
[2]
53 Sylvester C Y C, Wager T D, Lacey S C, et al. Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 2003, 41: 357-370
[3]
54 Hayashi T, Ko J H, Strafella A P, et al. Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proc Natl Acad Sci USA, 2013, 110: 4422-4427
[4]
55 Kruggel F, Herrmann C S, Wiggins C J, et al. Hemodynamic and electroencephalographic responses to illusory figures: recording of the evoked potentials during functional MRI. Neuroimage, 2001, 14: 1327-1336
[5]
56 Halgren E, Mendola J, Chong C D R, et al. Cortical activation to illusory shapes as measured with magnetoencephalography. Neuroimage, 2003, 18: 1001-1009
[6]
57 Moeller F G, Hasan K M, Steinberg J L, et al. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacol, 2004, 30: 610-617
[7]
58 Hoptman M J, Ardekani B A, Butler P D, et al. DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport, 2004, 15: 2467
[8]
59 Cohen M, Heller A, Ranganath C. Functional connectivity with anterior cingulate and orbitofrontal cortices during decision-making. Cognitive Brain Res, 2005, 23: 61-70
[9]
60 Sammler D, Kotz S A, Eckstein K, et al. Prosody meets syntax: the role of the corpus callosum. Brain, 2010, 133: 2643-2655
[10]
61 MacDonald A W, Cohen J D, Stenger V A, et al. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 2000, 288: 1835-1838
[11]
1 Bondarko V, Semenov L. Size estimates in Ebbinghaus illusion in adults and children of different age. Hum Physiol, 2004, 30: 24-30
[12]
2 Massaro D W, Anderson N H. Judgmental model of the Ebbinghaus illusion. J Exp Psychol, 1971, 89: 147
[13]
3 Rose D, Bressan P. Going round in circles: shape effects in the Ebbinghaus illusion. Spatial Vision, 2002, 15: 191-204
[14]
4 Bechtel W. Philosophy of Science: an Overview for Cognitive Science. London: Psychology Press, 2013
[15]
5 Crick F. Astonishing Hypothesis: the Scientific Search for the Soul. New York: Simon and Schuster, 1995
[16]
6 Zeki S. The neurology of ambiguity. Conscious Cogn, 2004, 13: 173-196
[17]
7 李小健, 刘东台. 视错觉产生的神经机制. 心理科学进展, 2008, 16: 555-561
[18]
8 Danckert J A, Sharif N, Haffenden A M, et al. A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. Exp Brain Res, 2002, 144: 275-280
[19]
9 Franz V, Bülthoff H, Fahle M. Grasp effects of the Ebbinghaus illusion: obstacle avoidance is not the explanation. Exp Brain Res, 2003, 149: 470-477
[20]
10 Glover S, Dixon P. Dynamic effects of the ebbinghaus illusion in grasping: support for a planning/control model of action. Percept Psychophys, 2002, 64: 266-278
[21]
11 Haffenden A M, Schiff K C, Goodale M A. The dissociation between perception and action in the Ebbinghaus illusion: nonillusory effects of pictorial cues on grasp. Curr Biol, 2001, 11: 177-181
[22]
12 van Ulzen N R, Semin G R, Oudejans R R, et al. Affective stimulus properties influence size perception and the Ebbinghaus illusion. Psychol Res, 2008, 72: 304-310
14 Coren S, Porac C. Heritability in visual-geometric illusions: a family study. Perception, 1979, 8: 303-309
[25]
15 Schiller P, Wiener M. Binocular and stereoscopic viewing of geometric illusions. Percept Motor Skill, 1962, 15: 739-747
[26]
16 Kaldy Z, Kovacs I. Visual context integration is not fully developed in 4-year-old children. Perception, 2003, 32: 657-666
[27]
17 Zanuttini L. Figural and semantic factors in change in the Ebbinghaus illusion across four age groups of children. Percept Motor Skill, 1996, 82: 15-18
[28]
18 Girgus J S, Coren S. Assimilation and contrast illusions: differences in plasticity. Percept Psychophys, 1982, 32: 555-561
[29]
21 Wapner S, Werner H. Perceptual development: an investigation within the framework of sensory-tonic field theory. Worcester: Clark University Press, 1957
[30]
22 McCrae R R, Costa P T. The stability of personality: observations and evaluations. Curr Dir Psychol Sci, 1994: 173-175
[31]
23 Eysenck H, Slater P. Effects of practice and rest on fluctuations in the Müller-lyer illusion. Brit J Psychol, 1958, 49: 246-256
[32]
24 Schiller L. Ganzheitliche Auffassung und Pers?nlichkeitstypus, Leipzig: JA Barth, 1942
[33]
25 Ehrenstein W H, Hamada J. Structural factors of size contrast in the Ebbinghaus illusion. Jpn Psychol Res, 1995, 37: 158-169
[34]
26 Schwarzkopf D S, Rees G. Subjective size perception depends on central visual cortical magnification in human V1. PLoS One, 2013, 8: e60550
[35]
27 Lee J H, van Donkelaar P. Dorsal and ventral visual stream contributions to perception-action interactions during pointing. Exp Brain Res, 2002, 143: 440-446
[36]
28 Coello Y, Danckert J, Blangero A, et al. Do visual illusions probe the visual brain? Illusions in action without a dorsal visual stream. Neuropsychologia, 2007, 45: 1849-1858
[37]
29 Yan T, Wang B, Yamasita Y, et al. Attention influence response in the human visual area V1 for Ebbinghaus illusion. In: Proceeding of 2011 IEEE/ICME International Conference on Complex Medical Engineering. Harbin: IEEE, 2011. 582-587
[38]
30 Weidner R, Fink G R. The neural mechanisms underlying the Müller-Lyer illusion and its interaction with visuospatial judgments. Cereb Cortex, 2007, 17: 878-884
[39]
31 Ashburner J, Friston K J. Voxel-based morphometry—the methods. Neuroimage, 2000, 11: 805-821
[40]
32 Costa P T, McCrea R B. Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI). Lutz: Psychological Assessment Resources, 1992
[41]
33 Patton J H, Stanford M S, Barratt E S. Factor structure of the Barratt impulsiveness scale. J Clin Psychol, 1995, 51: 768-774
[42]
34 Brainard D H. The psychophysics toolbox. Spatial Vision, 1997, 10: 433-436
[43]
35 Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage, 2007, 38: 95-113
[44]
36 Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One, 2013, 8: e68910
[45]
37 Matsuo K, Nicoletti M, Nemoto K, et al. A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Hum Brain Mapp, 2009, 30: 1188-1195
[46]
38 Schwarzkopf D S, Song C, Rees G. The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci, 2010, 14: 28-30
[47]
39 Wagner G, Koch K, Schachtzabel C, et al. Enhanced rostral anterior cingulate cortex activation during cognitive control is related to orbitofrontal volume reduction in unipolar depression. J Psychiatr Neurosci, 2008, 33: 199
[48]
40 Elliott R, Deakin B. Role of the orbitofrontal cortex in reinforcement processing and inhibitory control: evidence from functional magnetic resonance imaging studies in healthy human subjects. Int Rev Neurobiol, 2005, 65: 89
[49]
41 Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci, 2005, 8: 1458-1463
[50]
42 Heilbronner R L. The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. J Neuropsych Clin N, 1989, 1: 335-336
[51]
19 Piaget J. The Mechanisms of Perception. New York: Basic Books, 1969
[52]
20 Shulman G L. Attentional modulation of size contrast. Q J Exp Psychol, 1992, 45: 529-546
[53]
43 Malloy P, Bihrle A, Duffy J, et al. The orbitomedial frontal syndrome. Arch Clin Neuropsych, 1993, 8: 185-201
[54]
44 Casey B, Trainor R J, Orendi J L, et al. A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cognitive Neurosci, 1997, 9: 835-847
[55]
45 Richter J, Brunner R, Parzer P, et al. Reduced cortical and subcortical volumes in female adolescents with borderline personality disorder. Psychiatry Res, 2014, 221: 179-186
[56]
46 Brunner R, Henze R, Parzer P, et al. Reduced prefrontal and orbitofrontal gray matter in female adolescents with borderline personality disorder: is it disorder specific? Neuroimage, 2010, 49: 114-120
[57]
47 Matochik J A, London E D, Eldreth D A, et al. Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage, 2003, 19: 1095-1102
[58]
48 Tanabe J, Tregellas J R, Dalwani M, et al. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiat, 2009, 65: 160-164
[59]
49 Szatkowska I, Szymańska O, Bojarski P, et al. Cognitive inhibition in patients with medial orbitofrontal damage. Exp Brain Res, 2007, 181: 109-115
[60]
50 Franklin T R, Acton P D, Maldjian J A, et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiat, 2002, 51: 134-142
[61]
51 Badre D, Wagner A D. Selection, integration, and conflict monitoring: assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 2004, 41: 473-487