全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物腺毛次生代谢产物生物合成的研究进展

DOI: 10.1360/N052015-00073, PP. 557-568

Keywords: 腺毛,次生代谢,组学技术,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物表皮毛(trichomes)是广泛存在于高等植物表面的一种特化器官,尽管形态各异,但通常可被分成腺毛(glandulartrichomes)和非腺毛(non-glandulartrichomes)2大类.其中腺毛的一个重要特征是特异地大量合成种类繁多的次生代谢产物.这些次生代谢产物不仅对植物适应外界生物和非生物胁迫具有重要的作用,同时对人类的生产生活也具有很重要的经济价值.近年来随着各种组学技术的飞速发展,人们对参与这些代谢物生物合成的基因及其调控机理已经有较为详细的认识.本文拟对植物腺毛中次生代谢产物的生物合成过程、调控机制以及其合成生物学应用等方面的进展做一简要综述.

References

[1]  10 Fridman E, Wang J, Iijima Y, et al. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell, 2005, 17: 1252-1267
[2]  11 Marks M D, Tian L, Wenger J P, et al. Identification of candidate genes affecting D9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot, 2009, 60: 3715-3726
[3]  13 Ramirez A M, Saillard N, Yang T, et al. Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS One, 2013, 8: e65030
[4]  14 Schilmiller A L, Charbonneau A L, Last R L. Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci USA, 2012, 109: 16377-16382
[5]  15 Schilmiller A L, Schauvinhold I, Larson M, et al. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA, 2009, 106: 10865-10870
[6]  16 Wang G D, Dixon R A. Heterodimeric geranyl (geranyl) diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA, 2009, 106: 9914-9919
[7]  17 Wang W, Wang Y J, Zhang Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics, 2009, 10: 465
[8]  18 Tissier A. Glandular trichomes: what comes after expressed sequence tags? Plant J, 2012, 70: 51-68
[9]  19 Schilmiller A L, Pichersky E, Last R L. Taming the hydra of specialized metabolism: how systems biology and comparative approaches are revolutionizing plant biochemistry. Curr Opin Plant Biol, 2012, 15: 338-344
[10]  20 Dai X, Wang G, Yang D S, et al. TrichOME: a comparative omics database for plant trichomes. Plant Physiol, 2010, 152: 44-54
[11]  21 Schilmiller A L, Miner D P, Larson M, et al. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol, 2010, 153: 1212-1223
[12]  22 van Bakel H, Stout J M, Cote A G, et al. The draft genome and transcriptome of Cannabis sativa. Genome Biol, 2011, 12: R102
[13]  23 Ma D, Pu G, Lei C, et al. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol, 2009, 50: 2146-2161
[14]  24 Yu Z X, Li J X, Yang C Q, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua. L Mol Plant, 2012, 5: 353-365
[15]  25 McGarvey D J, Croteau R. Terpenoid metabolism. Plant Cell, 1995, 7: 1015-1026
[16]  26 Thulasiram H V, Erickson H K, Poulter C D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science, 2007, 316: 73-76
[17]  27 Hsieh M H, Chang C Y, Hsu S J, et al. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in IspD and IspE albino mutants in Arabidopsis. Plant Mol Biol, 2008, 66: 663-673
[18]  28 Pulido P, Perello C, Rodriguez-Concepcion M. New insights into plant isoprenoid metabolism. Mol Plant, 2012, 5: 964-967
[19]  29 Hoeffler J F, Herrerlin A, Grosdemange-Billiard C, et al. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J, 2002, 366: 573-583
[20]  30 Rodríguez-Concepcíon M, Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol, 2002, 130: 1079-1089
[21]  31 Wang G D, Tian L, Aziz N, et al. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol, 2008, 148: 1254-1266
[22]  32 Bertea C M, Schalk M, Karp F, et al. Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys, 2001, 390: 279-286
[23]  33 Davis E M, Ringer K L, McConkey M E, et al. Monoterpene metabolism: cloning, expression, and characterization of menthone reductases from peppermint. Plant Physiol, 2005, 137: 873-881
[24]  34 Ringer K L, Davis E M, Croteau R. Monoterpene metabolism cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint. Plant Physiol, 2005, 137: 863-872
[25]  35 Ito M, Honda G. Geraniol synthases from Perilla and their taxonomical significance. Phytochemistry, 2007, 68: 446-453
[26]  36 Yuba A, Yazaki K, Tabata M, et al. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch Biochem Biophys, 1996, 332: 280-287
[27]  37 Masumoto N, Korin M, Ito M. Geraniol and linalool synthases from wild species of perilla. Phytochemistry, 2010, 71: 1068-1075
[28]  38 Iijima Y, Gang D R, Fridman E, et al. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol, 2004, 134: 370-379
[29]  39 Iijima Y, Wang G, Fridman E, et al. Analysis of the enzymatic formation of citral in the glands of sweet basil. Arch Biochem Biophys, 2006, 448: 141-149
[30]  40 Deguerry F, Pastore L, Wu S, et al. The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch Biochem Biophys, 2006, 454: 123-136
[31]  41 Sallaud C, Giacalone C, T?pfer R, et al. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J, 2012, 72: 1-17
[32]  42 Bleeker P M, Spyropoulou E A, Diergaarde P J, et al. RNA-seq discovery, functional characterization, and compartmentation of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol, 2011, 77: 323-336
[33]  43 Akhtar T A, Matsuba Y, Schauvinhold I, et al. The tomato cis-prenyltransferase gene family. Plant J, 2013, 73: 640-652
[34]  12 Nagel J, Culley L K, Lu Y P, et al. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell, 2008, 20: 186-200
[35]  44 Matsuba Y, Nguyen T T H, Wiegert K, et al. Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell, 2013, 25: 2022-2036
[36]  45 Wang E, Wagner G J. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using post-transcriptional gene silencing. Planta, 2003, 216: 686-691
[37]  46 Brown G D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L (Qinghao). Molecules, 2010, 15: 7603-7698
[38]  47 Levesque F, Seeberger P H. Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Edit, 2012, 51: 1706-1709
[39]  48 Graham I A, Besser K, Blumer S, et al. The genetic map of Artemisia annua L identifies loci affecting yield of the antimalarial drug artemisinin. Science, 2010, 327: 328-331
[40]  49 Kikuta Y, Ueda H, Takahashi M, et al. Identification and characterization of a GDSL lipase-like protein that catalyzes the ester-forming reaction for pyrethrin biosynthesis in Tanacetum cinerariifolium—a new target for plant protection. Plant J, 2012, 7: 183-193
[41]  50 Ramirez A M, Stoopen G, Menzel T R, et al. Bidirectional secretions from glandular trichomes of pyrethrum enable immunization of seedlings. Plant Cell, 2012, 24: 4252-4265
[42]  79 Kennedy G G. Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol, 2003, 48: 51-72
[43]  80 Yu G, Nguyen T T H, Guo Y, et al. Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol, 2010, 154: 67-77
[44]  81 Williams W G, Kennedy G G, Yamamoto R T, et al. 2-Tridecanone: a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science, 1980, 207: 888-889
[45]  82 Dimock M B, Kennedy G G. The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol Expl Appl, 1983, 33: 263-268
[46]  83 Chatzivasileiadis E A, Sabelis M W. Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Exp Appl Acarol, 1997, 21: 473-484
[47]  84 Slocombe S P, Schauvinhold I, McQuinn R P, et al. Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiol, 2008, 148: 1830-1846
[48]  85 Weinhold A, Baldwin I T. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proc Natl Acad Sci USA, 2011, 108: 7855-7859
[49]  86 Van Dam N M, Hare J D. Biological activity of Datura wrightii glandular trichome exudate against Manduca sexta larvae. J Chem Ecol, 1998, 24: 1529-1549
[50]  87 Walters D S, Steffens J C. Branched chain amino acid metabolism in the biosynthesis of Lycopersicon pennellii glucose esters. Plant Physiol, 1990, 93: 1544-1551
[51]  1 McDowell E T, Kapteyn J, Schmidt A, et al. Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol, 2011, 155: 524-539
[52]  2 Wagner G J. Secreting glandular trichomes—more than just hairs. Plant Physiol, 1991, 96: 675-679
[53]  3 Wagner G J, Wang E, Shepherd R W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot, 2000, 93: 3-11
[54]  4 Schilmiller A L, Last R L, Pichersky E. Harnessing plant trichome biochemistry for the production of useful compounds. Plant J, 2008, 54: 702-711
[55]  5 Burke C C, Wildung M R, Croteau R. Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci USA, 1999, 96: 13062-13067
[56]  6 Gang D R, Beuerle T, Ullmann P, et al. Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol, 2002, 130: 1536-1544
[57]  90 Li A X, Steffens J C. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxipeptidase-like protein. Proc Natl Acad Sci USA, 2000, 97: 6902-6907
[58]  91 Li J W H, Vederas J C. Drug discovery and natural products: end of an era or an endless frontier? Science, 2009, 325: 161-165
[59]  92 Carothers J M, Goler J A, Keasling J D. Chemical synthesis using synthetic biology. Curr Opin Biotechnol, 2009, 20: 498-503
[60]  93 Bokinsky G, Peralta-Yahya P P, George A, et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA, 2011, 108: 19949-19954
[61]  94 Dellomonaco C, Fava F, Gonzalez R. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact, 2010, 9: 3
[62]  95 Nielsen J, Keasling J D. Synergies between synthetic biology and metabolic engineering. Nat Biotechnol, 2011, 29: 693-695
[63]  96 Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440: 940-943
[64]  97 Westfall P J, Pitera D J, Lenihan J R, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA, 2012, 109: E111-E118
[65]  98 Caniard A, Zerbe P, Legrand S, et al. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea L. and their relevance for perfume manufacture. BMC Plant Biol, 2012, 12: 119
[66]  99 Schalk M, Pastore L, Mirata M A, et al. Toward a biosynthetic route to sclareol and amber odorants. J Am Chem Soc, 2012, 134: 18900-18903
[67]  100 Zhang H, Wang Y, Pfeifer B A. Bacterial hosts for natural product production. Mol Pharm, 2008, 5: 212-225
[68]  101 Alper H, Stephanopoulos G. Uncovering the gene knockout landscape for improved lycopene production in E coli. Appl Microbiol Biotechnol, 2008, 78: 801-810
[69]  102 Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng, 2008, 10: 201-206
[70]  103 Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802
[71]  104 Newman J D, Marshall J, Chang M, et al. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng, 2006, 95: 684-691
[72]  105 Tsuruta H, Paddon C J, Eng D, et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One, 2009, 4: e4489
[73]  106 Yoon S H, Kim J E, Lee S H, et al. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol, 2007, 74: 131-139
[74]  107 Edwards J S, Palsson B O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA, 2000, 97: 5528-5533
[75]  108 Calik P, Akbay A. Mass flux balance-based model and metabolic flux analysis for collagen synthesis in the fibrogenesis process of human liver. Med Hypotheses, 2000, 55: 5-14
[76]  109 Edwards J S, Palsson B O. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics, 2000, 1: 1
[77]  110 Dan Y H, Yan H, Munyikwa T, et al. MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep, 2006, 25: 432-441
[78]  111 Bleeker P M, Mirabella R, Diergaarde P J, et al. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. Proc Natl Acad Sci USA, 2013, 109: 20124-20129
[79]  112 Spyropoulou E A, Haring M A, Schuurink R C. Expression of terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5′ promoter. Plant Mol Biol, 2013, 84: 345-357
[80]  8 Lange B M, Wildung M R, Stauber E J, et al. Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA, 2000, 97: 2934-2939
[81]  9 Aziz N, Paiva N L, May G D, et al. Profiling the transcriptome of alfalfa glandular trichomes. Planta, 2005, 221: 28-38
[82]  51 Luo S H, Luo Q, Niu X M, et al. Glandular trichomes of Leucosceptrum canum harbor defensive sesterterpenoids. Angew Chem Int Ed Engl, 2010, 49: 4471-4475
[83]  52 Luo S H, Hua J, Li C H, et al. New antifeedant C20 terpenoids from Leucosceptrum canum. Org Lett, 2012, 14: 5768-5771
[84]  53 Luo S H, Hua J, Niu X M, et al. Defense sesterterpenoid lactones from Leucosceptrum canum. Phytochemistry, 2013, 86: 29-35
[85]  54 Luo S H, Weng L H, Xie M J, et al. Defensive sesterterpenoids with unusual antipodal cyclopentenones from the leaves of Leucosceptrum canum. Org Lett, 2011, 13: 1864-1867
[86]  55 Vogt T. Phenylpropanoid biosynthesis. Mol Plant, 2010, 3: 2-20
[87]  56 Knudsen J T, Eriksson R, Gershenzon J, et al. Diversity and distribution of floral scent. Bot Rev, 2006, 72: 1-120
[88]  57 Dudareva N, Negre F, Nagegowda D A, et al. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci, 2006, 25: 417-440
[89]  58 Gang D R, Wang J, Dudareva N, et al. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol, 2001, 125: 539-555
[90]  59 Koeduka T, Fridman E, Gang D R, et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of coniferyl acohol ester. Proc Natl Acad Sci USA, 2006, 103: 10128-10133
[91]  60 Gang D R, Lavid N, Zubieta C, et al. Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell, 2002, 14: 505-519
[92]  61 Tan K H, Tan L T, Nishida R. Floral phenylpropanoid cocktail and architecture of Bulbophyllum vinaceum orchid in attracting fruit flies for pollination. J Chem Ecol, 2006, 32: 2429-2441
[93]  62 Sangwan N, Verman B, Verma K, et al. Nematicidal activity of some essential plant oils. Pest Sci, 1990, 28: 331-335
[94]  63 Ferrer J, Austin M B, Stewart C Jr, et al. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem, 2008, 46: 356-370
[95]  64 Bowles D, Isayenkova J, Lim E K, et al. Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol, 2005, 8: 254-263
[96]  65 Tattini M, Gravano E, Pinelli P, et al. Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol, 2000, 148: 69-77
[97]  66 Tattini M, Gucci R. Ionic relations of Phillyrea latifolia L. plants during NaCl stress and relief from stress. Can J Bot, 1999, 77: 969-975
[98]  67 Schmidt A, Li C, Shi F, et al. Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′-and 7/4′-myricetin O-methyltransferases. Plant Physiol, 2011, 155: 1999-2009
[99]  68 Kang J, Liu G, Shi F, et al. The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol, 2010, 154: 262-272
[100]  69 Duffey S S, Isman M B. Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Experientia, 1981, 37: 574-576
[101]  70 Sirikantaramas S, Morimoto S, Shoyama Y, et al. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of D1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem, 2004, 279: 39767-39774
[102]  71 Taura F, Tanaka S, Taguchi C, et al. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett, 2009, 583: 2061-2066
[103]  72 Gagne S J, Stout J M, Liu E, et al. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci USA, 2012, 109: 12811-12816
[104]  73 Stevens J F, Taylor A W, Nickerson G B, et al. Prenylflavonoid variation in Humulus lupulus: distribution and taxonomic significance of xanthogalenol and 4′-O-methylxanthohumol. Phytochemistry, 2000, 53: 759-775
[105]  74 Tsurumaru Y, Sasaki K, Miyawaki T, et al. HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochem Biophys Res Commun, 2012, 417: 393-398
[106]  75 Fung S, Zuurbier K, Paniego N, et al. Conversion of deoxyhumulone into the hop α-acid humulone. Phytochemistry, 1997, 44: 1047-1053
[107]  76 Zuurbier K, Fung S, Scheffer J V, et al. In-vitro prenylation of aromatic intermediates in the biosynthesis of bitter acids in Humulus lupulus. Phytochemistry, 1998, 49: 2315-2322
[108]  77 Xu H, Zhang F, Liu B, et al. Characterization of the formation of branched short-chain fatty acid: CoAs for bitter acid biosynthesis in hop glandular trichomes. Mol Plant, 2013, 6: 1301-1317
[109]  78 Li H, Ban Z, Qin H, et al. A heteromeric membrane-bound prenyltransferase complex from Humulus lupulus catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol, 2015, 167: 650-659
[110]  88 Kroumova A B, Wagner G G. Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta, 2003, 216: 1013-1102
[111]  89 Ghangas G S, Steffens J C. UDP glucose: fatty acid transglucosylation and transacylation in triacylglucose biosynthesis. Proc Natl Acad Sci USA, 1993, 90: 9911-9915
[112]  7 Iijima Y, Davidovich-Rikanati R, Fridman E, et al. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol, 2004, 136: 3724-3736

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133