全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物细胞壁形成机制的新进展

DOI: 10.1360/N052015-00076, PP. 544-556

Keywords: 细胞壁,纤维素,半纤维素,果胶质,木质素,细胞骨架

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞壁是植物细胞重要的特征结构,也是地球上最大的可再生碳水化合物资源库.随着近20多年研究技术的发展和多学科交叉手段的应用,植物细胞壁的形成机理得到了很大程度的揭示,勾画出了细胞壁合成、物质转运、形成调控、沉积重构等基本的代谢框架,涉及从胞内到胞外一系列的合成、转运和调控途径.本文概述了近年来细胞壁形成机理研究的热点问题和最新进展,包括对细胞壁结构和成分的新认识,纤维素合成场所(细胞质膜)和非纤维素多糖合成场所(高尔基体)中关键蛋白的挖掘及作用机制的新发现,细胞壁物质膜泡转运与细胞骨架的关系,以及细胞壁形成信号与转录调控网络的新进展.这些发现不仅使人们对细胞壁的合成机理有了更深入的认识,也为细胞壁经济价值的开发与利用奠定了重要的理论基础.同时本文还对该领域未来可能的热点和研究方向进行了展望.

References

[1]  1 Burton R A, Gidley M J, Fincher G B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol, 2010, 6: 724-732
[2]  2 Paredez A R, Somerville C R, Ehrhardt D W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 2006, 312: 1491-1495
[3]  3 Xu P, Donaldson L, Gergely Z, et al. Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol, 2007, 41: 101-116
[4]  4 Fernandes A N, Thomas L H, Altaner C M, et al. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA, 2011, 108: E1195-E1203
[5]  5 Ding S Y, Liu Y S, Zeng Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science, 2012, 338: 1055-1060
[6]  6 Pe?a M J, Kong Y, York W S, et al. A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth. Plant Cell, 2012, 24: 4511-4524
[7]  7 Atmodjo M A, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annu Rev Plant Biol, 2013, 64: 747-779
[8]  8 Vanholme R, Cesarino I, Rataj K, et al. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science, 2013, 341: 1103-1106
[9]  9 Zhao Q, Tobimatsu Y, Zhou R, et al. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula. Proc Natl Acad Sci USA, 2013, 110: 13660-13665
[10]  10 Lamport D T A, Kieliszewski M J, Chen Y, et al. Role of the extensin superfamily in primary cell wall architecture. Plant Physiol, 2011, 156: 11-19
[11]  11 Cannon M C, Terneus K, Hall Q, et al. Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA, 2008, 105: 2226-2231
[12]  12 Georgelis N, Yennawar N H, Cosgrove D J. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci USA, 2012, 109: 14830-14835
[13]  13 Wang T, Park Y B, Caporini M A, et al. Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci USA, 2013, 110: 16444-16449
[14]  14 Wang T, Zabotina O, Hong M. Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry, 2012, 51: 9846-9856
[15]  15 Dick-PeRez M, Zhang Y, Hayes J, et al. Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry, 2011, 50: 989-1000
[16]  16 Tan L, Eberhard S, Pattathil S, et al. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell, 2013, 25: 270-287
[17]  17 Rounds C M, Bezanilla M. Growth mechanisms in tip-growing plant cells. Annu Rev Plant Biol, 2013, 64: 243-265
[18]  18 Gonneau M, Desprez T, Guillot A, et al. Catalytic subunit stoichiometry within the cellulose synthase complex. Plant Physiol, 2014, 166: 1709-1712
[19]  19 Hill J L Jr, Hammudi M B, Tien M. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell, 2014, 26: 4834-4842
[20]  20 Carroll A, Mansoori N, Li S, et al. Complexes with mixed primary and secondary cellulose synthases are functional in Arabidopsis plants. Plant Physiol, 2012, 160: 726-737
[21]  21 Song D, Shen J, Li L. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol, 2010, 187: 777-790
[22]  22 Chen S, Ehrhardt D W, Somerville C R. Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Natl Acad Sci USA, 2010, 107: 17188-17193
[23]  23 Morgan J L W, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 2013, 493: 181-186
[24]  24 Omadjela O, Narahari A, Strumillo J, et al. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci USA, 2013, 110: 17856-17861
[25]  25 Harris D M, Corbin K, Wang T, et al. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA, 2012, 109: 4098-4103
[26]  26 Liu L, Shang-Guan K, Zhang B, et al. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet, 2013, 9: e1003704
[27]  27 Scheller H V, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol, 2010, 61: 263-289
[28]  28 Gunl M, Neumetzler L, Kraemer F, et al. AXY8 encodes an alpha-fucosidase, underscoring the importance of apoplastic metabolism on the fine structure of Arabidopsis cell wall polysaccharides. Plant Cell, 2011, 23: 4025-4040
[29]  29 Pauly M, Gille S, Liu L, et al. Hemicellulose biosynthesis. Planta, 2013, 238: 627-642
[30]  30 Liu X L, Liu L, Niu Q K, et al. MALE GAMETOPHYTE DEFECTIVE 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis. Plant J, 2011, 65: 647-660
[31]  31 Gille S, De Souza A, Xiong G, et al. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. Plant Cell, 2011, 23: 4041-4053
[32]  32 Bar-Peled M, O’neill M A. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol, 2011, 62: 127-155
[33]  33 Zhang B, Liu X, Qian Q, et al. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc Natl Acad Sci USA, 2011, 108: 5110-5115
[34]  34 Vanholme R, Storme V, Vanholme B, et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell, 2012, 24: 3506-3529
[35]  35 Alejandro S, Lee Y, Tohge T, et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol, 2012, 22: 1207-1212
[36]  36 Pesquet E, Zhang B, Gorzsás A, et al. Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell, 2013, 25: 1314-1328
[37]  37 Velasquez S M, Ricardi M M, Dorosz J G, et al. O-glycosylated cell wall proteins are essential in root hair growth. Science, 2011, 332: 1401-1403
[38]  38 Ogawa-Ohnishi M, Matsushita W, Matsubayashi Y. Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nat Chem Biol, 2013, 9: 726-730
[39]  39 Green P B. Mechanism for plant cellular morphogenesis. Science, 1962, 138: 1404-1405
[40]  40 Ledbetter M C, Porter K R. A “Microtubule” in plant cell fine structure. J Cell Biol, 1963, 19: 239-250
[41]  41 Crowell E F, Bischoff V, Desprez T, et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell, 2009, 21: 1141-1154
[42]  42 Gutierrez R, Lindeboom J J, Paredez A R, et al. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol, 2009, 11: 797-806
[43]  43 Crowell E F, Gonneau M, Stierhof Y D, et al. Regulated trafficking of cellulose synthases. Curr Opin Plant Biol, 2010, 13: 700-705
[44]  44 Wightman R, Turner S. Trafficking of the plant cellulose synthase complex. Plant Physiol, 2010, 153: 427-432
[45]  45 Bashline L, Li S, Anderson C T, et al. The endocytosis of cellulose synthase in Arabidopsis is dependent on m2, a clathrin-mediated endocytosis adaptin. Plant Physiol, 2013, 163: 150-160
[46]  46 Gu Y, Kaplinsky N, Bringmann M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA, 2010, 107: 12866-12871
[47]  47 Li S, Lei L, Somerville C R, et al. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA, 2012, 109: 185-190
[48]  48 Bringmann M, Li E, Sampathkumar A, et al. POM-POM2/Cellulose synthase interacting 1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell, 2012, 24: 163-177
[49]  49 Pesquet E, Korolev A V, Calder G, et al. The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol, 2010, 20: 744-749
[50]  52 Oda Y, Fukuda H. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science, 2012, 337: 1333-1336
[51]  53 Derbyshire P, Mccann M C, Roberts K. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol, 2007, 7: 31
[52]  54 Liu Y B, Lu S M, Zhang J F, et al. A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in Arabidopsis. Planta, 2007, 226: 1547-1560
[53]  55 Nicol F, His I, Jauneau A, et al. A plasma membrane-bound putative endo-1,4-b-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J, 1998, 17: 5563-5576
[54]  56 Ellis C, Karafyllidis I, Wasternack C, et al. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell, 2002, 14: 1557-1566
[55]  57 Mele G, Ori N, Sato Y, et al. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes Dev, 2003, 17: 2088-2093
[56]  58 Hematy K, Sado P E, Van Tuinen A, et al. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol, 2007, 17: 922-931
[57]  59 Guo H, Li L, Ye H, et al. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2009, 106: 7648-7653
[58]  60 Xu S L, Rahman A, Baskin T I, et al. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell, 2008, 20: 3065-3079
[59]  61 Creelman R A, Mullet J E. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell, 1997, 9: 1211-1223
[60]  62 Brutus A, Sicilia F, Macone A, et al. A domain swap approach reveals a role of the plant Wall-Associated Kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA, 2010, 107: 9452-9457
[61]  63 Zhao Y, Song D, Sun J, et al. Populus endo-beta-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J, 2013, 74: 473-485
[62]  64 Kubo M, Udagawa M, Nishikubo N, et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev, 2005, 19: 1855-1860
[63]  65 Zhong R, Demura T, Ye Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell, 2006, 18: 3158-3170
[64]  66 Zhao Q, Wang H, Yin Y, et al. Syringyl lignin biosynthesis is directly regulated by a secondary cell wall master switch. Proc Natl Acad Sci USA, 2010, 107: 14496-14501
[65]  67 Yang C, Xu Z, Song J, et al. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell, 2007, 19: 534-548
[66]  68 Zhong R, Richardson E A, Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell, 2007, 19: 2776-2792
[67]  69 Mccarthy R L, Zhong R, Ye Z H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell Physiol, 2009, 50: 1950-1964
[68]  70 Yamaguchi M, Ohtani M, Mitsuda N, et al. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell, 2010, 22: 1249-1263
[69]  71 Wang H, Avci U, Nakashima J, et al. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA, 2010, 107: 22338-22343
[70]  72 Lu S, Li Q, Wei H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA, 2013, 110: 10848-10853
[71]  50 Oda Y, Fukuda H. Secondary cell wall patterning during xylem differentiation. Curr Opin Plant Biol, 2012, 15: 38-44
[72]  51 Oda Y, Iida Y, Kondo Y, et al. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr Biol, 2010, 20: 1197-1202
[73]  73 Mouille G, Witucka-Wall H, Bruyant M-P, et al. Quantitative trait loci analysis of primary cell wall composition in Arabidopsis. Plant Physiol, 2006, 141: 1035-1044
[74]  74 Pattathil S, Avci U, Baldwin D, et al. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol, 2010, 153: 514-525
[75]  75 Parsons H T, Christiansen K, Knierim B, et al. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol, 2012, 159: 12-26

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133