1 Desaintsauveur A. Moringa, a multipurpose tree for the Sahel. Physiologie des arbres et arbustes en zones... Proceedings. John Libbey Eurotext, 1993. 441-446
[2]
2 Olson M E, Fahey J W. Moringa oleifera: a multipurpose tree for the dry tropics. Revista Mexicana De Biodiversidad, 2011, 82: 1071-1082
[3]
3 Horwath M, Benin V. Theoretical investigation of a reported antibiotic from the “Miracle Tree” Moringa oleifera. Comput Theor Chem, 2011, 965: 196-201
[4]
4 Makkar H P S, Becker K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agr Sci, 1997, 128: 311-322
[5]
5 Palada M C. Moringa (Moringa oleifera Lam): a versatile tree crop with horticultural potential in the subtropical United States. Hortscience, 1996, 31: 794-797
[6]
6 Oliveira J T A, Silveira S B, Vasconcelos I M, et al. Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lam. J Sci Food Agr, 1999, 79: 815-820
[7]
7 Amaglo N K, Bennett R N, Lo Curto R B, et al. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera Lam, grown in Ghana. Food Chem, 2010, 122: 1047-1054
[8]
8 Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1: 18
[9]
9 Kajitani R, Toshimoto K, Noguchi H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res, 2014, 24: 1384-1395
[10]
10 Boetzer M, Henkel C V, Jansen H J, et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 2011, 27: 578-579
[11]
11 Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27: 573-580
[12]
12 Jurka J, Kapitonov V V, Pavlicek A, et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res, 2005, 110: 462-467
[13]
13 Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 2007, 35: W265-W268
[14]
48 Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nat Genet, 2010, 42: 833-839
[15]
49 Christophides G K, Zdobnov E, Barillas-Mury C, et al. Immunity-related genes and gene families in Anopheles gambiae. Science, 2002, 298: 159-165
[16]
50 Shuai B, Reynaga-Pena C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129: 747-761
[17]
51 Connelly C, Hieter P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell, 1996, 86: 275-285
[18]
52 Bai C, Sen P, Hofmann K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86: 263-274
[19]
53 Breiteneder H, Pettenburger K, Bito A, et al. The gene coding for the major birch pollen allergen Betvl, is highly homologous to a pea disease resistance response gene. Embo Journal, 1989, 8: 1935-1938
[20]
54 Markovic-Housley Z, Degano M, Lamba D, et al. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Betv1 and its likely biological function as a plant steroid carrier. J Mol Biol, 2003, 325: 123-133
[21]
55 Wang D, Zhang Y, Zhang Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics, 2010, 8: 77-80
[22]
56 Boyer L A, Latek R R, Peterson C L. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 2004, 5: 158-163
[23]
14 Price A L, Jones N C, Pevzner P A. De novo identification of repeat families in large genomes. Bioinformatics, 2005, 21: i351-i358
[24]
15 Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815
[25]
16 Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183
[26]
17 Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100
[27]
18 Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604
[28]
19 Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551-556
[29]
20 Banks J A, Nishiyama T, Hasebe M, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 2011, 332: 960-963
[30]
21 Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res, 2004, 14: 988-995
[31]
22 Stanke M, Steinkamp R, Waack S, et al. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res, 2004, 32: W309-W312
[32]
23 Majoros W H, Pertea M, Salzberg S L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 2004, 20: 2878-2879
[33]
24 Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 2003, 31: 365-370
[34]
25 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30
[35]
26 Quevillon E, Silventoinen V, Pillai S, et al. InterProScan: protein domains identifier. Nucleic Acids Res, 2005, 33: W116-W120
[36]
27 Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25: 955-964
[37]
28 Burge S W, Daub J, Eberhardt R, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res, 2013, 41: D226-D232
[38]
29 Nawrocki E P, Eddy S R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 2013, 29: 2933-2935
[39]
30 Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36: D154-D158
[40]
31 Dai X, Zhao P X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res, 2011, 39: W155-W159
[41]
32 Li L, Stoeckert C J Jr, Roos D S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res, 2003, 13: 2178-2189
[42]
33 Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32: 1792-1797
[43]
34 Yang Z H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586-1591
[44]
35 De Bie T, Cristianini N, Demuth J P, et al. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 2006, 22: 1269-1271
[45]
36 Zhang Z, Li J, Zhao X Q, et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics, 2006, 4: 259-263
[46]
37 Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
[47]
38 Zhang Q, Chen W, Sun L, et al. The genome of Prunus mume. Nat Commun, 2012, 3: 1318
[48]
39 Kovach A, Wegrzyn J L, Parra G, et al. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics, 2010, 11: 420
[49]
40 Camon E, Barrell D, Brooksbank C, et al. The Gene Ontology Annotation (GOA) project—application of GO in SWISS-PROT, TrEMBL and InterPro. Comp Funct Genomics, 2003, 4: 71-74
[50]
41 Bauer S, Grossmann S, Vingron M, et al. Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 2008, 24: 1650-1651
[51]
42 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
[52]
43 Percudani R, Pavesi A, Ottonello S. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol, 1997, 268: 322-330
[53]
44 Beilstein M A, Nagalingum N S, Clements M D, et al. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA, 2010, 107: 18724-18728
[54]
45 Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449: 463-467
[55]
46 Varshney R K, Chen W, Li Y, et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol, 2012, 30: 83-89
[56]
47 Ming R, Hou S, Feng Y, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-996
[57]
57 Barg R, Sobolev I, Eilon T, et al. The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta, 2005, 221: 197-211
[58]
58 Mohrmann L, Kal A J, Verrijzer C P. Characterization of the extended Myb-like DNA-binding domain of trithorax group protein Zeste. J Biol Chem, 2002, 277: 47385-47392
[59]
59 Kundu-Michalik S, Bisotti M A, Lipsius E, et al. Nucleolar binding sequences of the ribosomal protein S6e family reside in evolutionary highly conserved peptide clusters. Mol Biol Evol, 2008, 25: 580-590
[60]
60 Fromont-Racine M, Senger B, Saveanu C, et al. Ribosome assembly in eukaryotes. Gene, 2003, 313: 17-42
[61]
61 Ferreira-Cerca S, Poll G, Gleizes P E, et al. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell, 2005, 20: 263-275
[62]
62 Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci, 2006, 31: 342-348
[63]
63 Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 2003, 31: 374-378
[64]
64 Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110
[65]
65 Poole R L. The TAIR database. Methods Mol Biol, 2007, 406: 179-212
[66]
66 Morimoto R I. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259: 1409-1410
[67]
67 Lindquist S, Craig E A. The heat-shock proteins. Annu Rev Genet, 1988, 22: 631-677
[68]
68 Lindquist S. The heat-shock response. Annu Rev Biochem, 1986, 55: 1151-1191
[69]
69 Breiteneder H, Pettenburger K, Bito A, et al. HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 2012, 28: 2853-2855
[70]
70 Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002, 110: 203-212
[71]
71 Bown A W, Shelp B J. The metabolism and functions of g-aminobutyric acid. Plant Physiol, 1997, 115: 1-5
[72]
72 Narayan V S, Nair P M. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry, 1990, 29: 367-375
[73]
73 Chung I, Bown A W, Shelp B J. The production and efflux of 4-aminobutyrate in isolated mesophyll cells. Plant Physiol, 1992, 99: 659-664
[74]
74 Tuin LG, Shelp B J. In situ [14C] glutamate metabolism by developing soybean cotyledons 1. metabolic routes. J Plant Physiol, 1994, 143: 1-7
[75]
75 Benveniste P. Biosynthesis and accumulation of sterols. Annu Rev Plant Biol, 2004, 55: 429-457
[76]
76 Schaeffer A, Bronner R, Benveniste P, et al. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J, 2001, 25: 605-615