全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

辣木(MoringaoleiferaLam.)的高质量参考基因组

, PP. 488-497

Keywords: 辣木,基因组,测序

Full-Text   Cite this paper   Add to My Lib

Abstract:

辣木因其具有高蛋白含量和对干旱的适应在许多发展中国家作为多年生的作物广泛种植.本文完成了高质量的辣木基因组草图,组装出预测基因组91.78%的大小,注释出来19465个蛋白质编码基因.此外,本文对辣木基因组和其他一些物种进行了比较基因组分析,验证了辣木的系统发生地位,同时鉴别了辣木的一些物种特异的基因家族和受正选择的基因,这些基因可能帮助进一步鉴别与辣木的高蛋白、快速生长和抗逆相关的基因.这个参考基因组将开拓对辣木的研究,促进应用基因组学手段对辣木的育种和改良.

References

[1]  1 Desaintsauveur A. Moringa, a multipurpose tree for the Sahel. Physiologie des arbres et arbustes en zones... Proceedings. John Libbey Eurotext, 1993. 441-446
[2]  2 Olson M E, Fahey J W. Moringa oleifera: a multipurpose tree for the dry tropics. Revista Mexicana De Biodiversidad, 2011, 82: 1071-1082
[3]  3 Horwath M, Benin V. Theoretical investigation of a reported antibiotic from the “Miracle Tree” Moringa oleifera. Comput Theor Chem, 2011, 965: 196-201
[4]  4 Makkar H P S, Becker K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agr Sci, 1997, 128: 311-322
[5]  5 Palada M C. Moringa (Moringa oleifera Lam): a versatile tree crop with horticultural potential in the subtropical United States. Hortscience, 1996, 31: 794-797
[6]  6 Oliveira J T A, Silveira S B, Vasconcelos I M, et al. Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lam. J Sci Food Agr, 1999, 79: 815-820
[7]  7 Amaglo N K, Bennett R N, Lo Curto R B, et al. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera Lam, grown in Ghana. Food Chem, 2010, 122: 1047-1054
[8]  8 Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1: 18
[9]  9 Kajitani R, Toshimoto K, Noguchi H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res, 2014, 24: 1384-1395
[10]  10 Boetzer M, Henkel C V, Jansen H J, et al. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 2011, 27: 578-579
[11]  11 Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res, 1999, 27: 573-580
[12]  12 Jurka J, Kapitonov V V, Pavlicek A, et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res, 2005, 110: 462-467
[13]  13 Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res, 2007, 35: W265-W268
[14]  48 Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nat Genet, 2010, 42: 833-839
[15]  49 Christophides G K, Zdobnov E, Barillas-Mury C, et al. Immunity-related genes and gene families in Anopheles gambiae. Science, 2002, 298: 159-165
[16]  50 Shuai B, Reynaga-Pena C G, Springer P S. The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129: 747-761
[17]  51 Connelly C, Hieter P. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell, 1996, 86: 275-285
[18]  52 Bai C, Sen P, Hofmann K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86: 263-274
[19]  53 Breiteneder H, Pettenburger K, Bito A, et al. The gene coding for the major birch pollen allergen Betvl, is highly homologous to a pea disease resistance response gene. Embo Journal, 1989, 8: 1935-1938
[20]  54 Markovic-Housley Z, Degano M, Lamba D, et al. Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Betv1 and its likely biological function as a plant steroid carrier. J Mol Biol, 2003, 325: 123-133
[21]  55 Wang D, Zhang Y, Zhang Z, et al. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics, 2010, 8: 77-80
[22]  56 Boyer L A, Latek R R, Peterson C L. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 2004, 5: 158-163
[23]  14 Price A L, Jones N C, Pevzner P A. De novo identification of repeat families in large genomes. Bioinformatics, 2005, 21: i351-i358
[24]  15 Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815
[25]  16 Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183
[26]  17 Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 2002, 296: 92-100
[27]  18 Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604
[28]  19 Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551-556
[29]  20 Banks J A, Nishiyama T, Hasebe M, et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science, 2011, 332: 960-963
[30]  21 Birney E, Clamp M, Durbin R. GeneWise and Genomewise. Genome Res, 2004, 14: 988-995
[31]  22 Stanke M, Steinkamp R, Waack S, et al. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res, 2004, 32: W309-W312
[32]  23 Majoros W H, Pertea M, Salzberg S L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 2004, 20: 2878-2879
[33]  24 Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res, 2003, 31: 365-370
[34]  25 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30
[35]  26 Quevillon E, Silventoinen V, Pillai S, et al. InterProScan: protein domains identifier. Nucleic Acids Res, 2005, 33: W116-W120
[36]  27 Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25: 955-964
[37]  28 Burge S W, Daub J, Eberhardt R, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res, 2013, 41: D226-D232
[38]  29 Nawrocki E P, Eddy S R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 2013, 29: 2933-2935
[39]  30 Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008, 36: D154-D158
[40]  31 Dai X, Zhao P X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res, 2011, 39: W155-W159
[41]  32 Li L, Stoeckert C J Jr, Roos D S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res, 2003, 13: 2178-2189
[42]  33 Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 2004, 32: 1792-1797
[43]  34 Yang Z H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586-1591
[44]  35 De Bie T, Cristianini N, Demuth J P, et al. CAFE: a computational tool for the study of gene family evolution. Bioinformatics, 2006, 22: 1269-1271
[45]  36 Zhang Z, Li J, Zhao X Q, et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics, 2006, 4: 259-263
[46]  37 Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
[47]  38 Zhang Q, Chen W, Sun L, et al. The genome of Prunus mume. Nat Commun, 2012, 3: 1318
[48]  39 Kovach A, Wegrzyn J L, Parra G, et al. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics, 2010, 11: 420
[49]  40 Camon E, Barrell D, Brooksbank C, et al. The Gene Ontology Annotation (GOA) project—application of GO in SWISS-PROT, TrEMBL and InterPro. Comp Funct Genomics, 2003, 4: 71-74
[50]  41 Bauer S, Grossmann S, Vingron M, et al. Ontologizer 2.0—a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics, 2008, 24: 1650-1651
[51]  42 Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
[52]  43 Percudani R, Pavesi A, Ottonello S. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol, 1997, 268: 322-330
[53]  44 Beilstein M A, Nagalingum N S, Clements M D, et al. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA, 2010, 107: 18724-18728
[54]  45 Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449: 463-467
[55]  46 Varshney R K, Chen W, Li Y, et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol, 2012, 30: 83-89
[56]  47 Ming R, Hou S, Feng Y, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452: 991-996
[57]  57 Barg R, Sobolev I, Eilon T, et al. The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta, 2005, 221: 197-211
[58]  58 Mohrmann L, Kal A J, Verrijzer C P. Characterization of the extended Myb-like DNA-binding domain of trithorax group protein Zeste. J Biol Chem, 2002, 277: 47385-47392
[59]  59 Kundu-Michalik S, Bisotti M A, Lipsius E, et al. Nucleolar binding sequences of the ribosomal protein S6e family reside in evolutionary highly conserved peptide clusters. Mol Biol Evol, 2008, 25: 580-590
[60]  60 Fromont-Racine M, Senger B, Saveanu C, et al. Ribosome assembly in eukaryotes. Gene, 2003, 313: 17-42
[61]  61 Ferreira-Cerca S, Poll G, Gleizes P E, et al. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell, 2005, 20: 263-275
[62]  62 Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci, 2006, 31: 342-348
[63]  63 Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 2003, 31: 374-378
[64]  64 Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110
[65]  65 Poole R L. The TAIR database. Methods Mol Biol, 2007, 406: 179-212
[66]  66 Morimoto R I. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259: 1409-1410
[67]  67 Lindquist S, Craig E A. The heat-shock proteins. Annu Rev Genet, 1988, 22: 631-677
[68]  68 Lindquist S. The heat-shock response. Annu Rev Biochem, 1986, 55: 1151-1191
[69]  69 Breiteneder H, Pettenburger K, Bito A, et al. HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 2012, 28: 2853-2855
[70]  70 Nam K H, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002, 110: 203-212
[71]  71 Bown A W, Shelp B J. The metabolism and functions of g-aminobutyric acid. Plant Physiol, 1997, 115: 1-5
[72]  72 Narayan V S, Nair P M. Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry, 1990, 29: 367-375
[73]  73 Chung I, Bown A W, Shelp B J. The production and efflux of 4-aminobutyrate in isolated mesophyll cells. Plant Physiol, 1992, 99: 659-664
[74]  74 Tuin LG, Shelp B J. In situ [14C] glutamate metabolism by developing soybean cotyledons 1. metabolic routes. J Plant Physiol, 1994, 143: 1-7
[75]  75 Benveniste P. Biosynthesis and accumulation of sterols. Annu Rev Plant Biol, 2004, 55: 429-457
[76]  76 Schaeffer A, Bronner R, Benveniste P, et al. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J, 2001, 25: 605-615

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133