1 Parashar U D, Gibson C J, Bresee J S, et al. Rotavirus and severe childhood diarrhea. Emerg Infect Dis, 2006, 12: 304-306
[2]
2 Tate J E, Burton A H, Boschi-Pinto C, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis, 2012, 12: 136-141
[3]
3 Kuhlenschmidt T B, Hanafin W P, Gelberg H B, et al. Sialic acid dependence and independence of group A rotaviruses. Adv Exp Med Biol, 1999, 473: 309-317
[4]
4 Ciarlet M, Estes M K. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol, 1999, 80: 943-948
[5]
5 Huang P, Xia M, Tan M, et al. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol, 2012, 86: 4833-4843
[6]
6 Liu Y, Huang P, Tan M, et al. Rotavirus VP8*: Phylogeny, host range, and interaction with histo-blood group antigens. J Virol, 2012, 86: 9899-9910
[7]
7 Settembre E C, Chen J Z, Dormitzer P R, et al. Atomic model of an infectious rotavirus particle. EMBO J, 2011, 30: 408-416
[8]
8 Trask S D, Ogden K M, Patton J T. Interactions among capsid proteins orchestrate rotavirus particle functions. Curr Opin Virol, 2012, 2: 373-379
[9]
9 Isa P, Realpe M, Romero P, et al. Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology, 2004, 322: 370-381
[10]
10 Pesavento J B, Crawford S E, Roberts E, et al. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization. J Virol, 2005, 79: 8572-8580
[11]
11 Padilla-Noriega L, Dunn S J, Lopez S, et al. Identification of two independent neutralization domains on the VP4 trypsin cleavage products VP5* and VP8* of human rotavirus ST3. Virology, 1995, 206: 148-154
[12]
12 Patton J T, Hua J, Mansell E A. Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4. J Virol, 1993, 67: 4848-4855
[13]
13 Fiore L, Greenberg H B, Mackow E R. The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology, 1991, 181: 553-563
[14]
14 Denisova E, Dowling W, LaMonica R, et al. Rotavirus capsid protein VP5* permeabilizes membranes. J Virol, 1999, 73: 3147-3153
[15]
15 Zarate S, Espinosa R, Romero P, et al. The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J Virol, 2000, 74: 593-599
[16]
16 Matthijnssens J, Ciarlet M, McDonald SM, et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol, 2011, 156: 1397-1413
[17]
17 Oriol R, Mollicone R, Coullin P, et al. Genetic regulation of the expression of ABH and Lewis antigens in tissues. APMIS Suppl, 1992, 27: 28-38
[18]
18 Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. APMIS, 2000, 108: 1-28
[19]
19 Clausen H, Hakomori S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang, 1989, 56: 1-20
[20]
20 Le Pendu J. Histo-blood group antigen and human milk oligosaccharides: genetic polymorphism and risk of infectious diseases. Adv Exp Med Biol, 2004, 554: 135-143
[21]
21 Yamamoto F. Review: ABO blood group system—ABH oligosaccharide antigens, anti-A and anti-B, A and B glycosyltransferases, and ABO genes. Immunohematology, 2004, 20: 3-22
[22]
22 Marionneau S, Cailleau-Thomas A, Rocher J, et al. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie, 2001, 83: 565-573
[23]
23 Rydell G E, Kindberg E, Larson G, et al. Susceptibility to winter vomiting disease: a sweet matter. Rev Med Virol, 2011, 21: 370-382
[24]
24 Boren T, Falk P, Roth K A, et al. Attachment of helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science, 1993, 262: 1892-1895
[25]
25 Isa P, Arias C F, Lopez S. Role of sialic acids in rotavirus infection. Glycoconj J, 2006, 23: 27-37
[26]
26 Zarate S, Cuadras M A, Espinosa R, et al. Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol, 2003, 77: 7254-7260
[27]
27 Guo C T, Nakagomi O, Mochizuki M, et al. Ganglioside GM(1a) on the cell surface is involved in the infection by human rotavirus KUN and MO strains. J Biochem, 1999, 126: 683-688
[28]
28 Coulson B S, Londrigan S L, Lee D J. Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci USA, 1997, 94: 5389-5394
[29]
29 Hewish M J, Takada Y, Coulson B S. Integrins a2b1 and a4b1 can mediate SA11 rotavirus attachment and entry into cells. J Virol, 2000, 74: 228-236
[30]
30 Graham K L, Halasz P, Tan Y, et al. Integrin-using rotaviruses bind a2b1 integrin a2 I domain via VP4 DGE sequence and recognize aXb2 and aVb3 by using VP7 during cell entry. J Virol, 2003, 77: 9969-9978
[31]
31 Huang P, Farkas T, Marionneau S, et al. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J Infect Dis, 2003, 188: 19-31
[32]
32 Hutson A M, Atmar R L, Marcus D M, et al. Norwalk virus-like particle hemagglutination by binding to h histo-blood group antigens. J Virol, 2003, 77: 405-415
[33]
33 Huang P, Farkas T, Zhong W, et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol, 2005, 79: 6714-6722
[34]
34 Hu L, Crawford S E, Czako R, et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with a-type histo-blood group antigen. Nature, 2012, 485: 256-259
[35]
35 Liu Y, Huang P, Jiang B, et al. Poly-lacnac as an age-specific ligand for rotavirus P
[36]
in neonates and infants. PLoS One, 2013, 8: e78113
[37]
36 Bohm R, Fleming F E, Maggioni A, et al. Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nat Commun, 2015, 6: 5907
[38]
37 Delorme C, Brussow H, Sidoti J, et al. Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J Virol, 2001, 75: 2276-2287
[39]
38 Bishop J R, Gagneux P. Evolution of carbohydrate antigens—microbial forces shaping host glycomes? Glycobiology, 2007, 17: 23R-34R
[40]
39 Tian P, Yang D, Jiang X, et al. Specificity and kinetics of norovirus binding to magnetic bead-conjugated histo-blood group antigens. J Appl Microbiol, 2010, 109: 1753-1762
[41]
40 Souza M, Cheetham S M, Azevedo M S, et al. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J Virol, 2007, 81: 9183-9192
[42]
41 Ruvoen-Clouet N, Ganiere J P, Andre-Fontaine G, et al. Binding of rabbit hemorrhagic disease virus to antigens of the ABH histo-blood group family. J Virol, 2000, 74: 11950-11954
[43]
42 Nystrom K, Le Gall-Recule G, Grassi P, et al. Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathog, 2011, 7: e1002188
[44]
43 Farkas T, Cross R W, Hargitt E 3rd, et al. Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses. J Virol, 2010, 84: 8617-8625
[45]
44 Gonzales Flores P A, Diaz Ferrer J O, Monge Salgado E, et al. ABO blood groups as risk factor in helicobacter pylori infection. Rev Gastroenterol Peru, 2000, 20: 370-375
[46]
45 Aryana K, Keramati M R, Zakavi S R, et al. Association of helicobacter pylori infection with the Lewis and ABO blood groups in dyspeptic patients. Niger Med J, 2013, 54: 196-199
[47]
46 Darwazeh A M, Lamey P J, Samaranayake L P, et al. The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. J Med Microbiol, 1990, 33: 43-49
[48]
48 Zhang B, Chassaing B, Shi Z, et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science, 2014, 346: 861-865
[49]
47 Nice T J, Baldridge M T, McCune B T, et al. Interferon-l cures persistent murine norovirus infection in the absence of adaptive immunity. Science, 2015, 347: 269-273