全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

帕金森病的细胞治疗研究进展

DOI: 10.1360/N052014-00338, PP. 340-346

Keywords: 干细胞,帕金森病,移植

Full-Text   Cite this paper   Add to My Lib

Abstract:

干细胞为治疗帕金森病提供了新的希望.目前用于研究的干细胞主要有神经干细胞、胚胎干细胞、诱导多功能干细胞、间充质干细胞等.本文回顾了上述细胞在移植治疗帕金森病研究中的进展,并介绍了近期出现的将体细胞直接重编程为神经细胞或神经干细胞的新技术.

References

[1]  75 Wu J, Sheng C, Liu Z, et al. Lmx1a enhances the effect of iNSCs in a PD model. Stem Cell Res, 2015, 14: 1-9
[2]  8 Ren X, Zhang T, Gong X, et al. AAV2-mediated striatum delivery of human CDNF prevents the deterioration of midbrain dopamine neurons in a 6-hydroxydopamine induced parkinsonian rat model. Exp Neurol, 2013, 248: 148-156
[3]  9 Sun Z, Jia J, Gong X, et al. Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in parkinsonian rats. Neurosci Lett, 2012, 520: 32-37
[4]  10 Lindvall O, Rehncrona S, Brundin P, et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson''s disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol, 1989, 46: 615-631
[5]  11 Svendsen C N, Caldwell M A, Shen J, et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson''s disease. Exp Neurol, 1997, 148: 135-146
[6]  12 Brederlau A, Correia A S, Anisimov S V, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson''s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells, 2006, 24: 1433-1440
[7]  13 Tabar V, Tomishima M, Panagiotakos G, et al. Therapeutic cloning in individual parkinsonian mice. Nat Med, 2008, 14: 379-381
[8]  14 Sanchez-Pernaute R, Lee H, Patterson M, et al. Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson''s disease. Brain, 2008, 131: 2127-2139
[9]  15 Hargus G, Cooper O, Deleidi M, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA, 2010, 107: 15921-15926
[10]  16 Brundin P, Nilsson O G, Strecker R E, et al. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson''s disease. Exp Brain Res, 1986, 65: 235-240
[11]  17 Wenning G K, Odin P, Morrish P, et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson''s disease. Ann Neurol, 1997, 42: 95-107
[12]  18 Hagell P, Schrag A, Piccini P, et al. Sequential bilateral transplantation in Parkinson''s disease: effects of the second graft. Brain, 1999, 122: 1121-1132
[13]  19 Politis M, Wu K, Loane C, et al. Serotonergic neurons mediate dyskinesia side effects in Parkinson''s patients with neural transplants. Sci Transl Med, 2010, 2: 38ra46
[14]  20 Freed C R, Greene P E, Breeze R E, et al. Transplantation of embryonic dopamine neurons for severe Parkinson''s disease. New Engl J Med, 2001, 344: 710-719
[15]  21 Olanow C W, Kordower J H, Freeman T B. Fetal nigral transplantation as a therapy for Parkinson''s disease. Trends Neurosci, 1996, 19: 102-109
[16]  22 Olanow C W, Goetz C G, Kordower J H, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson''s disease. Ann Neurol, 2003, 54: 403-414
[17]  23 Hagell P, Piccini P, Bjorklund A, et al. Dyskinesias following neural transplantation in Parkinson''s disease. Nat Neurosci, 2002, 5: 627-628
[18]  24 Piccini P, Pavese N, Hagell P, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson''s disease. Brain, 2005, 128: 2977-2986
[19]  25 Politis M, Oertel W H, Wu K, et al. Graft-induced dyskinesias in Parkinson''s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord, 2011, 26: 1997-2003
[20]  26 Gage F H, Kempermann G, Palmer T D, et al. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol, 1998, 36: 249-266
[21]  27 Altman J, Das G D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 1965, 124: 319-335
[22]  28 Mckay R. Stem cells in the central nervous system. Science, 1997, 276: 66-71
[23]  29 Alvarez-Buylla A, Temple S. Stem cells in the developing and adult nervous system. J Neurobiol, 1998, 36: 105-110
[24]  30 Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp Neurol, 2000, 164: 209-214
[25]  31 Parish C L, Castelo-Branco G, Rawal N, et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J Clin Invest, 2008, 118: 149-160
[26]  32 Fricker R A, Carpenter M K, Winkler C, et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci, 1999, 19: 5990-6005
[27]  33 Schwarz S C, Wittlinger J, Schober R, et al. Transplantation of human neural precursor cells in the 6-OHDA lesioned rats: effect of immunosuppression with cyclosporine A. Parkinsonism Relat Disord, 2006, 12: 302-308
[28]  34 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154-156
[29]  35 Thomson J A, Kalishman J, Golos T G, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA, 1995, 92: 7844-7848
[30]  36 Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282: 1145-1147
[31]  51 Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322: 945-949
[32]  52 Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324: 797-801
[33]  53 Cheng L, Hansen N F, Zhao L, et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell, 2012, 10: 337-344
[34]  54 Chung C Y, Khurana V, Auluck P K, et al. Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science, 2013, 342: 983-987
[35]  55 Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells, 2001, 19: 180-192
[36]  56 Zipori D. Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis, 2004, 33: 211-215
[37]  57 Trzaska K A, Rameshwar P. Dopaminergic neuronal differentiation protocol for human mesenchymal stem cells. Methods Mol Biol, 2011, 698: 295-303
[38]  58 Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest, 2004, 113: 1701-1710
[39]  59 Ren Z, Wang J, Wang S, et al. Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep, 2013, 3: 2786
[40]  60 Vierbuchen T, Ostermeier A, Pang Z P, et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 2010, 463: 1035-1041
[41]  61 Ieda M, Fu J D, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 2010, 142: 375-386
[42]  62 Szabo E, Rampalli S, Risueno R M, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 2010, 468: 521-526
[43]  63 Pfisterer U, Kirkeby A, Torper O, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA, 2011, 108: 10343-10348
[44]  64 Caiazzo M, Dell''anno M T, Dvoretskova E, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 2011, 476: 224-227
[45]  65 Kim J, Su S C, Wang H, et al. Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell, 2011, 9: 413-419
[46]  66 Sheng C, Zheng Q, Wu J, et al. Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Res, 2012, 22: 769-772
[47]  67 Liu X, Li F, Stubblefield E A, et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Res, 2012, 22: 321-332
[48]  68 Kim J, Efe J A, Zhu S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci USA, 2011, 108: 7838-7843
[49]  69 Sheng C, Zheng Q, Wu J, et al. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. Cell Res, 2012, 22: 208-218
[50]  70 Wang L, Huang W, Su H, et al. Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods, 2013, 10: 84-89
[51]  71 Zou Q, Yan Q, Zhong J, et al. Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem, 2014, 289: 5250-5260
[52]  72 Kim S M, Flasskamp H, Hermann A, et al. Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc, 2014, 9: 871-881
[53]  73 Cheng L, Hu W, Qiu B, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res, 2014, 24: 665-679
[54]  74 Hong J Y, Lee S H, Lee S C, et al. Therapeutic potential of induced neural stem cells for spinal cord injury. J Biol Chem, 2014, 289: 32512-32525
[55]  1 Olanow C W. The scientific basis for the current treatment of Parkinson''s disease. Annu Rev Med, 2004, 55: 41-60
[56]  2 Dick F D, De Palma G, Ahmadi A, et al. Environmental risk factors for Parkinson''s disease and parkinsonism: the Geoparkinson study. Occup Environ Med, 2007, 64: 666-672
[57]  3 Lees A J, Hardy J, Revesz T. Parkinson''s disease. Lancet, 2009, 373: 2055-2066
[58]  4 Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson''s disease. New Engl J Med, 2004, 351: 2498-2508
[59]  5 Marsden C D, Parkes J D. "On-off" effects in patients with Parkinson''s disease on chronic levodopa therapy. Lancet, 1976, 1: 292-296
[60]  6 Benabid A L, Chabardes S, Mitrofanis J, et al. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson''s disease. Lancet Neurol, 2009, 8: 67-81
[61]  7 Bensadoun J C, Deglon N, Tseng J L, et al. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson''s disease using GDNF. Exp Neurol, 2000, 164: 15-24
[62]  37 Kim J H, Auerbach J M, Rodriguez-Gomez J A, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson''s disease. Nature, 2002, 418: 50-56
[63]  38 Roy N S, Cleren C, Singh S K, et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med, 2006, 12: 1259-1268
[64]  39 Kriks S, Shim J W, Piao J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson''s disease. Nature, 2011, 480: 547-551
[65]  40 Lee S H, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol, 2000, 18: 675-679
[66]  41 Kawasaki H, Mizuseki K, Nishikawa S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 2000, 28: 31-40
[67]  42 Chambers S M, Fasano C A, Papapetrou E P, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009, 27: 275-280
[68]  43 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663-676
[69]  44 Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131: 861-872
[70]  45 Yu J, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318: 1917-1920
[71]  46 Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 2008, 3: 587-590
[72]  47 Soldner F, Hockemeyer D, Beard C, et al. Parkinson''s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 2009, 136: 964-977
[73]  48 Dimos J T, Rodolfa K T, Niakan K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008, 321: 1218-1221
[74]  49 Israel M A, Yuan S H, Bardy C, et al. Probing sporadic and familial Alzheimer''s disease using induced pluripotent stem cells. Nature, 2012, 482: 216-220
[75]  50 Wernig M, Lengner C J, Hanna J, et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol, 2008, 26: 916-924

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133