全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青蒿素模拟热量限制延长酵母寿命的双期响应模式全转录组谱解析

, PP. 398-412

Keywords: 热量限制,一氧化氮,青蒿琥酯,过氧化氢,长寿,酿酒酵母

Full-Text   Cite this paper   Add to My Lib

Abstract:

热量限制(CR)可延长酵母及哺乳动物等多种生物的寿命.尽管CR延寿被认为与呼吸活动增强有关,但营养摄取不足反而加大能量消耗显然不符合逻辑.在解决食物供应减少与代谢消耗增加这对矛盾的过程中,本研究揭示了1种基于CR的"双期响应"模式,它包括1个"线粒体增强期"(ME)与1个"后线粒体增强期"(PME),两者可依据线粒体标志蛋白的表达模式及活性动态加以区分.ME以整体抗氧化活化为特征,PME则以系统代谢调整为标志.抗疟药青蒿素的半合成衍生物青蒿琥酯通过烷化血红素蛋白可重现CR的衰老延缓效果,提示青蒿琥酯-血红素结合可以在功能上模拟一氧化氮-血红素相互作用,据此已建立青蒿琥酯-血红素结合物形成与细胞色素c氧化酶活性升高之间的相关性.外源过氧化氢也能模拟CR诱导抗氧化基因,改变代谢节律,延长酵母寿命,暗示过氧化氢与延寿有关.青蒿琥酯可模拟CR激发的一氧化氮及过氧化氢诱导的抗氧化反应,清除活性氧,降低氧化应激,指导机体由合成代谢向分解代谢转变,维持必要的代谢功能,延长酵母的期望寿命.

References

[1]  1 Koubova J, Guarente L. How does calorie restriction work? Genes Dev, 2005, 17: 313-321
[2]  2 Jiang J C, Jaruga E, Repnevskya M V, et al. An intervention resembling calorie restriction prolongs life span and retard aging in yeast. FASEB J, 2000, 14: 2135-2137
[3]  3 Walker G, Houthoofd K, Vanfleteran J R, et al. Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mech Ageing Dev, 2005, 126: 929-937
[4]  4 Rogina B, Helfand S L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA, 2004, 101: 15998-16003
[5]  5 Youngman L D, Park J Y, Ames B N. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci USA, 1992, 89: 9112-9116
[6]  6 Skinner C, Lin S J. Effects of calorie restriction on life span of microorganisms. Appl Microbiol Biotechnol, 2010, 88: 817-828
[7]  7 Nisoli E, Clementi E, Paolucci C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science, 2003, 299: 896-899
[8]  8 Nisoli E, Falcone S, Tonello C, et al. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA, 2004, 101: 16507-16512
[9]  9 Nisoli E, Carruba M O. Nitric oxide and mitochondrial biogenesis. J Cell Sci, 2006, 119: 2855-2862
[10]  10 Li B, Skinner C, Castello P R, Kato M, et al. Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. J Aging Res, 2011, 2011: 673185
[11]  11 Lewinska A, Macierzynska E, Grzelak A, et al. A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast. Biogerontology, 2011, 12: 309-320
[12]  12 Kig C, Temizkan G. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma, 2009, 238: 59-66
[13]  13 Castello P R, David P S, McClure T, et al. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab, 2006, 3: 277-287
[14]  14 Lin S J, Kaeberlein M, Andalis A A, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002, 418: 344-348
[15]  15 Civitarese A E, Carling S, Heilbronn L K, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med, 2007, 4: e76
[16]  16 Lanza I R, Zabielski P, Klaus K A, et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab, 2012, 16: 777-788
[17]  17 Hancock C R, Han D H, Higashida K, et al. Does calorie restriction induce mitochondrial biogenesis? A reevaluation. FASEB J, 2011, 25: 785-791
[18]  18 Miller B F, Robinson M M, Bruss M D, et al. A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell, 2012, 11: 150-161
[19]  19 Pan Y, Schroeder E A, Ocampo A, et al. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab, 2011, 13: 668-678
[20]  20 Mesquita A, Weinberger M, Silva A, et al. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA, 2010, 107: 15123-15128
[21]  21 Mason M, Nicholes G P, Wilson M T, et al. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA, 2006, 103: 708-713
[22]  22 Zhang S M, Gerhard G S. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One, 2009, 4: e7472
[23]  23 Zeng Q P, Xiao N, Bao F, et al. Artesunate potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase. BMC Res Notes, 2011, 4: 223
[24]  24 汪大婷, 曾庆平. 低毒兴奋效应模拟热量调节酵母转运体基因及脂质代谢. 微生物学通报, 2014, 41: 1-10
[25]  25 Piper M D W, Partridge L, Raubenheimer D, et al. Dietary restriction and aging: a unifying perspective. Cell Metab, 2011, 14: 154-160
[26]  26 Kaeberlein M, Hu D, Kerr E O, et al. Increased lifespan due to calorie restriction in respiratory deficient yeast. PLoS Genet, 2005, 1: e69
[27]  27 Kaeberlein M, Burtner C R, Kennedy B K. Recent developments in yeast aging. PLoS Genet, 2007, 3: e84
[28]  28 Kamada Y, Sekito T, Ohsumi Y. Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol, 2004, 279: 73-84
[29]  29 Powers R W 3rd, Kaeberlein M, Caldwell S D, et al. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev, 2006, 20: 171-184
[30]  30 Lefevre S D, van Roermund C W, Wanders R J A, et al. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell, 2013, 12: 784-793
[31]  31 Rodgers J T, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature, 2005, 434: 113-118
[32]  32 Canto C, Gerhart-Hines Z, Feige J N, et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature, 2009, 458: 1056-1060
[33]  33 Lee W J, Kim M, Park H S, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARa and PGC-1. Biochem Biophys Res Commun, 2006, 340: 291-295
[34]  34 Lin S J, Defossez P A, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science, 2000, 289: 2126-2128
[35]  35 Gustin M C, Albertyn J, Alexander M, et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 1998, 62: 1264-1300
[36]  36 Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001, 22: 153-183
[37]  37 Son Y, Cheong Y K, Kim N H, et al. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct, 2011, 2011: 792639
[38]  38 Pan K Z, Palter J E, Rogers A N, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell, 2007, 6: 111-119
[39]  39 Gaitanaki C, Konstantina S, Chrysaand S, et al. Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J Exp Biol, 2003, 206: 2759-2769
[40]  40 Fabrizio P, Pozza S D, Pletcher C M, et al. Regulation of longevity and stress resistance by Sch9 in yeast. Science, 2001, 292: 288-290
[41]  41 Thomson D M, Fick C A, Gordon S E. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol, 2008, 104: 625-632
[42]  42 Rollis C, Codlin S, B?hler J. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell, 2013, 12: 563-573
[43]  43 Taylor C T, Moncada S. Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia. Arterioscl Throm Vasc Biol, 2010, 30: 643-647
[44]  44 Cerqueira F M, Laurindo F R M, Kowaltowski A J. Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, Akt and mitochondrial biogenesis. PLoS One, 2011, 6: e18433
[45]  45 Agarwal S, Sharma S, Agarwal V, et al. Calorie restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res, 2005, 39: 55-62
[46]  46 Kharade S V, Mittal N, Das S P, et al. Mrg19 depletion increase S. cerevisiae lifespan by augmenting ROS defence. FEBS Lett, 2005, 579: 6809-6813
[47]  47 Piper P W, Harris N L, MacLean M. Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronological ageing yeast. Mech Ageing Dev, 2006, 127: 733-740
[48]  48 Schulz T J, Zarse K, Voigt A, et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab, 2007, 6: 280-293
[49]  49 Yang W, Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol, 2010, 8: e1000556
[50]  50 Qiu X, Brown K, Hirschey M D, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab, 2010, 12: 662-667
[51]  51 Harrison D E, Strong R, Sharp Z D, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 2009, 460: 392-395
[52]  52 Borra M T, Smith B C, Denu J M. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem, 2005, 280: 17187-17195
[53]  53 Park S J, Ahmad F, Philp A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012, 148: 421-433

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133