全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有一氧化氮催化生成功能的层层自组装含硒人工血管的构建与评价

, PP. 389-397

Keywords: 一氧化氮,催化生成,电纺,人工血管,生物相容性

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了原位催化生成一氧化氮(NO)的新型仿生人工血管材料.固载有机硒催化剂的聚乙烯亚胺,作为NO供体催化剂,和海藻酸钠通过静电层层自组装交替结合到电纺聚已内酯基质的表面上.这种材料接触到NO供体—S-亚硝基谷胱甘肽时,显示了显著的催化释放NO的能力.在S-亚硝基硫醇存在的情况下,该材料可以抑制平滑肌细胞的黏附和铺展,同时促进内皮细胞的增殖.体外血小板黏附和动静脉分流实验显示这种材料具有良好的抗血栓性能,能够抑制血小板激活和聚集,预防急性血栓形成.该研究为提高人工血管的细胞功能和抗血栓性能提供一种新方法.

References

[1]  36 Meng S, Liu Z J, Shen L, et al. The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system. Biomaterials, 2009, 30: 2276-2283
[2]  37 Chen J L, Li Q L, Chen J Y, et al. Improving blood-compatibility of titanium by coating collagen-heparin multilayers. Appl Surf Sci, 2009, 255: 6894-6900
[3]  38 Yang J, Welby J L, Meyerhoff M E. Generic nitric oxide (NO) generating surface by immobilizing organoselenium species via Layer-by-Layer assembly. Langmuir, 2008, 24: 10265-10272
[4]  39 Koch T, Suenson E, Henriksen U, et al. The oxidative cleavability of protein cross-linking reagents containing organoselenium bridges. Bioconj Chem, 1990, 1: 296-304
[5]  40 Heikal L, Martin G P, Dailey L A. Characterisation of the decomposition behaviour of S-nitrosoglutathione and a new class of analogues: S-Nitrosophytochelatins. Nitric Oxide, 2009, 20: 157-165
[6]  41 Zheludkevich M L, Shchukin D G, Yasakau K A, et al. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater, 2007, 19: 402-411
[7]  28 Giustarini D, Milzani A, Colombo R, et al. Nitric oxide and S-nitrosothiols in human blood. Clin Chim Acta, 2003, 330: 85-98
[8]  29 Kelm M. Nitric oxide metabolism and breakdown. Biochimica Et Biophysica Acta-Bioenergetics, 1999, 1411: 273-289
[9]  30 Mugesh G, Singh H B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem Soc Rev, 2000, 29: 347-357
[10]  31 Oh B K, Meyerhoff M E. Spontaneous catalytic generation of nitric oxide from S-nitrosothiols at the surface of polymer films doped with lipophilic copper(II) complex. J Am Chem Soc, 2003, 125: 9552-9553
[11]  32 Lin Q K, Van J J, Qiu F Y, et al. Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. J Biomed Mater Res A, 2011, 96A: 132-141
[12]  33 Picart C. Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem, 2008, 15: 685-697
[13]  34 Tang Z Y, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater, 2006, 18: 3203-3224
[14]  35 Thierry B, Winnik F M, Merhi Y, et al. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules, 2003, 4: 1564-1571
[15]  1 Cleary M A, Geiger E, Grady C, et al. Vascular tissue engineering: the next generation. Trends Mol Med, 2012, 18: 394-404
[16]  2 Krejcy K, Schmetterer L, Kastner J, et al. Role of nitric oxide in hemostatic system activation in vivo in humans. Arterioscler Thromb Vasc Biol, 1995, 15: 2063-2067
[17]  3 Salvemini D, Masini E, Anggard E, et al. Synthesis of a nitric oxide-like factor from L-arginine by rat serosal mast cells: stimulation of guanylate cyclase and inhibition of platelet aggregation. Biochem Biophys Res Commun, 1990, 169: 596-601
[18]  4 Samama C M, Diaby M, Fellahi J L, et al. Inhibition of platelet aggregation by inhaled nitric oxide in patients with acute respiratory distress syndrome. Anesthesiology, 1995, 83: 56-65
[19]  5 Brisbois E J, Handa H, Major T C, et al. Long-term nitric oxide release and elevated temperature stability with S-nitroso-N- acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer. Biomaterials, 2013, 34: 6957-6966
[20]  6 Mancinelli R L, McKay C P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl Environ Microbiol, 1983, 46: 198-202
[21]  7 Rizk M, Witte M B, Barbul A. Nitric oxide and wound healing. World J Surg, 2004, 28: 301-306
[22]  8 Witte M B, Barbul A. Role of nitric oxide in wound repair. Am J Surg, 2002, 183: 406-412
[23]  9 Broughton G, Janis J E, Attinger C E. The basic science of wound healing. Plast Reconstr Surg, 2006, 117: 12s-34s
[24]  10 Diodati J G, Quyyumi A A, Hussain N, et al. Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelet effect. Thromb Haemost, 1993, 70: 654-658
[25]  11 Ignarro L J, Buga G M, Wood K S, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA, 1987, 84: 9265-9269
[26]  12 Radomski M W, Palmer R M, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA, 1990, 87: 5193-5197
[27]  13 Feldman P L, Griffith O W, Stuehr D J. The surprising life of nitric oxide. Chem Eng News, 1993, 71: 26-38
[28]  14 Sarkar R, Webb R C. Does nitric oxide regulate smooth muscle proliferation? A critical appraisal. J Vasc Res, 1998, 35: 135-142
[29]  15 Radomski M W, Vallance P, Whitley G, et al. Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res, 1993, 27: 1380-1382
[30]  16 Michiels C. Endothelial cell functions. J Cell Physiol, 2003, 196: 430-443
[31]  17 Vaughn M W, Kuo L, Liao J C. Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol Heart Circ Physiol, 1998, 274: H2163-H2176
[32]  18 Miller M R, Megson I L. Review-recent developments in nitric oxide donor drugs. Br J Pharmacol, 2007, 151: 305-321
[33]  19 Moncada S, Palmer R M, Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 1991, 43: 109-142
[34]  20 Bredt D S, Snyder S H. Biological roles of nitric oxide. Sci Am, 1992, 266: 68-77
[35]  21 Conklin B S, Richter E R, Kreutziger K L, et al. Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys, 2002, 24: 173-183
[36]  22 Cai W Y, Wu J F, Xi C W, et al. Diazeniumdiolate-doped poly(lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings. Biomaterials, 2012, 33: 7933-7944
[37]  23 Cai W Y, Wu J F, Xi C W, et al. Carboxyl-ebselen-based layer-by-layer films as potential antithrombotic and antimicrobial coatings. Biomaterials, 2011, 32: 7774-7784
[38]  24 Hofler L, Meyerhoff M E. Modeling the effect of oxygen on the amperometric response of immobilized organoselenium-based S-nitrosothiol sensors. Anal Chem, 2011, 83: 619-624
[39]  25 Reynolds M M, Frost M C, Meyerhoff M E. Nitric oxide-releasing hydrophobic polymers: preparation, characterization, and potential biomedical applications. Free Radical Biol Med, 2004, 37: 926-936
[40]  26 Zhang L, Wang K, Zhao Q, et al. Core-shell fibrous vascular grafts with the nitric oxide releasing property. Sci China Chem, 2010, 53: 528-534
[41]  27 Seabra A B, da Silva R, de Souza G F P, et al. Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces. Artif Organs, 2008, 32: 262-267

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133