全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于水凝胶的“自下而上”组织工程技术研究进展

DOI: 10.1360/N052014-00164, PP. 256-270

Keywords: 水凝胶,模块化组装,“自下而上”组织工程,细胞打印

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着微纳生物制造技术和新型生物材料(如新型水凝胶)的发展,基于模块化组装的“自下而上”组织工程技术引起了广泛的关注,在复杂微结构和血管化组织/器官构建方面显示了广阔的发展前景.本文介绍了“自下而上”组织工程技术的基本原理及模块单元的制备和组装方法,综述和讨论了“自下而上”组织工程技术在体外重构三维组织/器官方面取得的最新研究进展,并对其在生物医学领域的发展前景进行了展望.

References

[1]  63 Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab chip, 2007, 7: 1139-1145
[2]  1 Martin P. Wound healing—aiming for perfect skin regeneration. Science, 1997, 276: 75-81
[3]  2 Oberpenning F, Meng J, Yoo J J, et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol, 1999, 17: 149-155
[4]  3 Hillsley M V, Frangos J A. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng, 1994, 43: 573-581
[5]  4 Nichol J W, Khademhosseini A. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter, 2009, 5: 1312-1319
[6]  5 Naito H, Melnychenko I, Didié M, et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation, 2006, 114: I72-I78
[7]  6 Liu Tsang V, Chen A A, Cho L M, et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J, 2007, 21: 790-801
[8]  7 http://memsliu.pme.nthu.edu.tw/MSCL%20Projects/Liver%20cell%20patterning.htm
[9]  8 http://www.studyblue.com/notes/note/n/pre-ap-biology-study-guide-2012-13-mrsedward/deck/9722162
[10]  9 http://smabio113-2010.blogspot.com
[11]  10 http://www.interactive-biology.com/3906/dont-forget-about-the-endocrine-system-the-key-players-in-maintaining-body-homeostasis/
[12]  11 Xu F, Finley T D, Turkaydin M, et al. The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials, 2011, 32: 7847-7855
[13]  12 McGuigan A P, Sefton M V. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci USA, 2006, 103: 11461-11466
[14]  13 Liu V A, Bhatia S N. Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices, 2002, 4: 257-266
[15]  14 Chan V, Zorlutuna P, Jeong J H, et al. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip, 2010, 10: 2062-2070
[16]  15 Liu B, Liu Y, Lewis A K, et al. Modularly assembled porous cell-laden hydrogels. Biomaterials, 2010, 31: 4918-4925
[17]  16 Ramón-Azcón J, Ahadian S, Obregón R, et al. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab Chip, 2012, 12: 2959-2969
[18]  17 Dean D M, Napolitano A P, Youssef J, et al. Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J, 2007, 21: 4005-4012
[19]  18 Fayol D, Frasca G, Le Visage C, et al. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. Adv Mater, 2013, 25: 2611-2616
[20]  19 Khademhosseini A, Langer R. Microengineered hydrogels for tissue engineering. Biomaterials, 2007, 28: 5087-5092
[21]  20 Revzin A, Russell R J, Yadavalli V K, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 2001, 17: 5440-5447
[22]  21 Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys, 2007, 40: R319
[23]  22 Sun W, Starly B, Nam J, et al. Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Design, 2005, 37: 1097-1114
[24]  23 Liu J, Gao D, Li H-F, et al. Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays. Lab Chip, 2009, 9: 1301-1305
[25]  24 Eydelnant I A, Li B B, Wheeler A R. Microgels on-demand. Nat Commun, 2014, 5: 3355
[26]  25 McGuigan A P, Sefton M V. Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering. Tissue Eng, 2007, 13: 1069-1078
[27]  26 Leferink A, Schipper D, Arts E, et al. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches. Adv Mater, 2014, 26: 2592-2599
[28]  27 Du Y, Lo E, Ali S, et al. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci USA, 2008, 105: 9522-9527
[29]  28 Fernandez J G, Khademhosseini A. Micro-masonry: construction of 3D structures by microscale self-assembly. Adv Mater, 2010, 22: 2538-2541
[30]  29 Soman P, Chung P H, Zhang A P, et al. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng, 2013, 110: 3038-3047
[31]  30 Yoshida R, Omata K, Yamaura K, et al. Maskless microfabrication of thermosensitive gels using a microscope and application to a controlled release microchip. Lab Chip, 2006, 6: 1384-1386
[32]  31 Zamanian B, Masaeli M, Nichol J W, et al. Interface-directed self-assembly of cell-laden microgels. Small, 2010, 6: 937-944
[33]  32 Liu N, Liang W, Liu L, et al. Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics. Lab Chip, 2014, 14: 1367-1376
[34]  33 Hollister S J. Porous scaffold design for tissue engineering. Nat Mater, 2005, 4: 518-524
[35]  34 Chung S E, Jung Y, Kwon S. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics. Small, 2011, 7: 796-803
[36]  35 Chung S E, Park W, Shin S, et al. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater, 2008, 7: 581-587
[37]  36 Tasoglu S, Kavaz D, Gurkan U A, et al. Paramagnetic levitational assembly of hydrogels. Adv Mater, 2013, 25: 1137-1143
[38]  37 Xu F, Wu C A M, Rengarajan V, et al. Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater, 2011, 23: 4254-4260
[39]  38 Tseng H, Gage J A, Raphael R, et al. Assembly of a three-dimensional multitype bronchiole co-culture model using magnetic levitation. Tissue Eng Part C Methods, 2013, 19: 665-675
[40]  39 Han Y L, Yang Y, Liu S, et al. Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication, 2013, 5: 035004
[41]  40 Gurkan U A, Fan Y, Xu F, et al. Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures. Adv Mater, 2013, 25: 1192-1198
[42]  41 Qi H, Ghodousi M, Du Y, et al. DNA-directed self-assembly of shape-controlled hydrogels. Nat Commun, 2013, 4: 2275
[43]  42 Mironov V, Visconti R P, Kasyanov V, et al. Organ printing: tissue spheroids as building blocks. Biomaterials, 2009, 30: 2164-2174
[44]  43 Yeh H J J, Smith J S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technol Lett, 1994, 6: 706-708
[45]  44 Akiyama H, Ito A, Kawabe Y, et al. Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique. Biomed Microdevices, 2009, 11: 713-721
[46]  45 Okochi M, Takano S, Isaji Y, et al. Three-dimensional cell culture array using magnetic force-based cell patterning for analysis of invasive capacity of BALB/3T3/v-src. Lab chip, 2009, 9: 3378-3384
[47]  46 Tseng H, Balaoing L R, Grigoryan B, et al. A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomater, 2014, 10: 173-182
[48]  47 Kim J A, Choi J-H, Kim M, et al. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials, 2013, 34: 8555-8563
[49]  48 Souza G R, Molina J R, Raphael R M, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol, 2010, 5: 291-296
[50]  49 Rose S, Prevoteau A, Elzière P, et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature, 2014, 505: 382-385
[51]  50 Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol, 2008, 3: 139-143
[52]  51 Mattix B, Olsen T R, Gu Y, et al. Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater, 2014, 10: 623-629
[53]  52 Tasoglu S, Diller E, Guven S, et al. Untethered micro-robotic coding of three-dimensional material composition. Nat Commun, 2014, 5: 3124
[54]  53 Wang Z, Yang P, Xu H, et al. Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics, 2009, 30: 446-453
[55]  54 Kalsin A M, Fialkowski M, Paszewski M, et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science, 2006, 312: 420-424
[56]  55 Chen Y M, Tanaka M, Gong J P, et al. Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomaterials, 2007, 28: 1752-1760
[57]  56 Yan H, Park S H, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science, 2003, 301: 1882-1884
[58]  57 Macfarlane R J, Lee B, Jones M R, et al. Nanoparticle superlattice engineering with DNA. Science, 2011, 334: 204-208
[59]  58 Maune H T, Han S-P, Barish R D, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol, 2010, 5: 61-66
[60]  59 Li C Y, Wood D K, Hsu C M, et al. DNA-templated assembly of droplet-derived PEG microtissues. Lab Chip, 2011, 11: 2967-2975
[61]  60 Wilson W C, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol, 2003, 272: 491-496
[62]  61 Abeyewickreme A, Kwok A, McEwan J R, et al. Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency. Integr Biol, 2009, 1: 260-266
[63]  62 Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng, 2012, 109: 1855-1863
[64]  64 周丽宏, 陈自强, 黄国友, 等. 细胞打印技术及应用. 中国生物工程杂志, 2010, 30: 95-104
[65]  65 Durmus N G, Tasoglu S, Demirci U. Bioprinting: functional droplet networks. Nat Mater, 2013, 12: 478-479
[66]  66 Mironov V, Boland T, Trusk T, et al. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol, 2003, 21: 157-161
[67]  67 Moon S, Hasan S K, Song Y S, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods, 2009, 16: 157-166
[68]  68 Duarte Campos D F, Blaeser A, Weber M, et al. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication, 2013, 5: 015003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133