72 Aoki T, Kinoshita M, Aoki R, et al. Imaging of neural ensemble for the retrieval of a learned behavioral program. Neuron, 2013, 78: 881-894
[2]
73 Agetsuma M, Aizawa H, Aoki T, et al. The habenula is crucial for experience-dependent modification of fear responses in zebrafish. Nat Neurosci, 2010, 13: 1354-1356
[3]
74 Lee A, Mathuru A S, Teh C, et al. The habenula prevents helpless behavior in larval zebrafish. Curr Biol, 2010, 20: 2211-2216
[4]
75 Valente A, Huang K H, Portugues R, et al. Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem, 2012, 19: 170-177
[5]
76 Chen T W, Wardill T J, Sun Y, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 2013, 499: 295-300
[6]
77 Gong Y, Wagner M J, Zhong Li J, et al. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun, 2014, 5: 3674-3674
[7]
78 St-Pierre F, Marshall J D, Yang Y, et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci, 2014, 17: 884-889
[8]
79 Akerboom J, Garreras Calderón N, Tian L, et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci, 2013, 6: 2
[9]
80 Portugues R, Feierstein C E, Engert F, et al. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron, 2014, 81: 1328-1343
[10]
81 Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 2004, 305: 1007-1009
[11]
82 Panier T, Romano S A, Olive R, et al. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front Neural Circuits, 2013, 7: 65
[12]
83 Baker M. Flashing fish brains filmed in action. Nature, 2013, doi: 10.1038/nature.2013.12621
[13]
84 Crick F. The impact of molecular biology on neuroscience. Philos Trans R Soc Lond B Biol Sci, 1999, 354: 2021-2025
[14]
85 Wen L, Wei W, Gu W, et al. Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev Biol, 2008, 314: 84-92
[15]
86 Kawakami K, Shima A. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene, 1999, 240: 239-244
[16]
87 Huang P, Zhu Z, Lin S, et al. Reverse genetic approaches in zebrafish. J Genet Genomics, 2012, 39: 421-433
[17]
88 Doyon Y, Mc Cammon J M, Miller J C, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol, 2008, 26: 702-708
[18]
89 Meng X, Noyes M B, Zhu L J, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 2008, 26: 695-701
[19]
90 Huang P, Xiao A, Zhou M, et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29: 699-700
[20]
91 Zu Y, Tong X, Wang Z, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, 10: 329-331
[21]
92 Auer T O, Duroure K, De Cian A, et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014, 24: 142-153
[22]
93 Luo L, Callaway E M, Svoboda K. Genetic dissection of neural circuits. Neuron, 2008, 57: 634-660
[23]
1 Barlow H B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception, 1972, 1: 371-394
[24]
2 Parker A J, Newsome W T. Sense and the single neuron: probing the physiology of perception. Annu Rev Neurosci, 1998, 21: 227-277
[25]
3 Azevedo F A, Carvalho L R, Grinberg L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol, 2009, 513: 532-541
[26]
4 Ahrens M B, Orger M B, Robson D N, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods, 2013, 10: 413-420
[27]
5 Li Y, Du X F, Liu C S, et al. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell, 2012, 23: 1189-1202
[28]
6 Mu Y, Li X Q, Zhang B, et al. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron, 2012, 75: 688-699
[29]
7 Wei H P, Yao Y Y, Zhang R W, et al. Activity-induced long-term potentiation of excitatory synapses in developing zebrafish retina in vivo. Neuron, 2012, 75: 479-489
[30]
8 Dreosti E, Odermatt B, Dorostkar M M, et al. A genetically encoded reporter of synaptic activity in vivo. Nat Methods, 2009, 6: 883-889
[31]
9 Dreosti E, Esposti F, Baden T, et al. In vivo evidence that retinal bipolar cells generate spikes modulated by light. Nat Neurosci, 2011, 14: 951-952
[32]
10 Odermatt B, Nikolaev A, Lagnado L. Encoding of luminance and contrast by linear and nonlinear synapses in the retina. Neuron, 2012, 73: 758-773
[33]
11 Nikolaev A, Leung K M, Odermatt B, et al. Synaptic mechanisms of adaptation and sensitization in the retina. Nat Neurosci, 2013, 16: 934-941
[34]
12 Zhang R W, Wei H P, Xia Y M, et al. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol, 2010, 588: 2557-2569
[35]
13 Zhang R W, Zhang S Y, Du J L. KCC2-dependent subcellular E(Cl) difference of ON-OFF retinal ganglion cells in larval zebrafish. Front Neural Circuits, 2013, 7: 103
[36]
14 Niell C M, Smith S J. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum. Neuron, 2005, 45: 941-951
[37]
15 Ramdya P, Engert F. Emergence of binocular functional properties in a monocular neural circuit. Nat Neurosci, 2008, 11: 1083-1090
[38]
16 Nikolaou N, Lowe A S, Walker A S, et al. Parametric functional maps of visual inputs to the tectum. Neuron, 2012, 76: 317-324
[39]
17 Hunter P R, Lowe A S, Thompson I D, et al. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. J Neurosci, 2013, 33: 13940-13945
[40]
18 Lowe A S, Nikolaou N, Hunter P R, et al. A systems-based dissection of retinal inputs to the zebrafish tectum reveals different rules for different functional classes during development. J Neurosci, 2013, 33: 13946-13956
[41]
19 Grama A, Engert F. Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition. Front Neural Circuits, 2012, 6: 59
[42]
20 Gabriel J P, Trivedi C A, Maurer C M, et al. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum. Neuron, 2012, 76: 1147-1160
[43]
21 Bianco I H, Kampff A R, Engert F. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci, 2011, 5: 101
[44]
22 Trivedi C A, Bollmann J H. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture. Front Neural Circuits, 2013, 7: 86-86
[45]
23 Del Bene F, Wyart C, Robles E, et al. Filtering of visual information in the tectum by an identified neural circuit. Science, 2010, 330: 669-673
[46]
24 Graeber M B. Changing face of microglia. Science, 2010, 330: 783-788
[47]
25 Hanisch U K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci, 2007, 10: 1387-1394
[48]
26 Ransohoff R M, Cardona A E. The myeloid cells of the central nervous system parenchyma. Nature, 2010, 468: 253-262
[49]
27 Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci, 2005, 8: 752-758
[50]
28 Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308: 1314-1318
[51]
29 Friedrich R W. Mechanisms of odor discrimination: neurophysiological and behavioral approaches. Trends Neurosci, 2006, 29: 40-47
[52]
30 Friedrich R W, Hyman S E. Neuronal computations in the olfactory system of zebrafish. Annu Rev Neurosci, 2013, 36: 383-402
[53]
31 Friedrich R W, Korsching S I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron, 1997, 18: 737-752
[54]
32 Friedrich R W, Korsching S I. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J Neurosci, 1998, 18: 9977-9988
[55]
33 Freedman D J, Assad J A. A proposed common neural mechanism for categorization and perceptual decisions. Nat Neurosci, 2011, 14: 143-146
[56]
34 Goldstone R L, Hendrickson A T. Categorical perception. Wiley Interdiscip Rev Cogn Sci, 2010, 1: 69-78
[57]
35 Niessing J, Friedrich R W. Olfactory pattern classification by discrete neuronal network states. Nature, 2010, 465: 47-52
[58]
36 Wiechert M T, Judkewitz B, Riecke H, et al. Mechanisms of pattern decorrelation by recurrent neuronal circuits. Nat Neurosci, 2010, 13: 1003-1010
[59]
37 Zhu P, Frank T, Friedrich R W. Equalization of odor representations by a network of electrically coupled inhibitory interneurons. Nat Neurosci, 2013, 16: 1678-1686
[60]
38 Kermen F, Franco L M, Wyatt C, et al. Neural circuits mediating olfactory-driven behavior in fish. Front Neural Circuits, 2013, 7: 62
[61]
39 Blumhagen F, Zhu P, Shum J, et al. Neuronal filtering of multiplexed odour representations. Nature, 2011, 479: 493-498
[62]
40 Miyasaka N, Arganda-Carreras I, Wakisaka N, et al. Olfactory projectome in the zebrafish forebrain revealed by genetic single-neuron labelling. Nat Commun, 2014, 5: 3639
[63]
41 Dreosti E, Vendrell Llopis N, Carl M, et al. Left-Right Asymmetry is required for the habenulae to respond to both visual and olfactory stimuli. Curr Biol, 2014, 24: 440-445
[64]
42 Jetti S K, Vendrell-Llopis, Yaksi E. Spontaneous activity governs olfactory representations in spatially organized habenular microcircuits. Curr Biol, 2014, 24: 434-439
[65]
43 Krishnan S, Mathuru A S, Kibat C, et al. The right dorsal habenula limits attraction to an odor in zebrafish. Curr Biol, 2014, 24: 1167-1175
[66]
44 D?ving K B, Lastein S. The alarm reaction in fishes—odorants, modulations of responses, neural pathways. Ann NY Acad Sci, 2009, 1170: 413-423
[67]
45 Speedie N, Gerlai R. Alarm substance induced behavioral response in zebrafish (Danio rerio). Behav Brain Res, 2009, 188: 168-177
[68]
46 von Frisch K. über einen schreckstoff der fischhaut und seine biologische bedeutung. Z Vgl Physiol, 1942, 29: 49-145
[69]
47 Mathuru A S, Kibat C, Cheong W F, et al. Chondroitin fragments are odorants that trigger fear behavior in fish. Curr Biol, 2012, 22: 538-544
[70]
48 Partan S R, Marler P. Issues in the classification of multimodal communication signals. Am Nat, 2005, 166: 231-245
[71]
49 Zucker C L, Dowling J E. Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature, 1987, 330: 166-168
[72]
50 Esposti F, Johnston J, Rosa J M, et al. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron, 2013, 79: 97-110
[73]
51 Eaton R C, Bombardieri R A, Meyer D L. The Mauthner-initiated startle response in teleost fish. J Exp Biol, 1977, 66: 65-81
[74]
52 Liu K S, Fetcho J R. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron, 1999, 23: 325-335
[75]
53 O’Malley D M, Kao Y H, Fetcho J R. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron, 1996, 17: 1145-1155
[76]
54 McLean D L, Fetcho J R. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. J Neurosci, 2009, 29: 13566-13577
[77]
55 Kinkhabwala A, Riley M, Koyama M, et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA, 2011, 108: 1164-1169
[78]
56 Koyama M, Kinkhabwala A, Satou C, et al. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc Natl Acad Sci USA, 2011, 108: 1170-1175
[79]
57 Bagnall M W, McLean D L. Modular organization of axial microcircuits in zebrafish. Science, 2014, 343: 197-200
[80]
58 Gabriel J P, Ausborn J, Ampatzis K, et al. Principles governing recruitment of motoneurons during swimming in zebrafish. Nat Neurosci, 2011, 14: 93-99
[81]
59 Menelaou E, McLean D L. A gradient in endogenous rhythmicity and oscillatory drive matches recruitment order in an axial motor pool. J Neurosci, 2012, 32: 10925-10939
[82]
60 Douglass A D, Kraves S, Deisseroth K, et al. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol, 2008, 18: 1133-1137
[83]
61 Huang K H, Ahrens M B, Dunn T W, et al. Spinal projection neurons control turning behaviors in zebrafish. Curr Biol, 2013, 23: 1566-1573
[84]
62 Orger M B, Kampff A R, Severi K E, et al. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci, 2008, 11: 327-333
[85]
63 Warp E, Agarwal G, Wyart C, et al. Emergence of patterned activity in the developing zebrafish spinal cord. Curr Biol, 2012, 22: 93-102
[86]
64 Schoonheim P J, Arrenberg A B, Del Bene F, et al. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci, 2010, 30: 7111-7120
[87]
65 Kubo F, Hablitzel B, Dal Maschio M, et al. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron, 2014, 81: 1344-1359
[88]
66 Anastasio T J. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol Cybern, 1994, 72: 69-79
[89]
67 Goldman M S. Memory without feedback in a neural network. Neuron, 2009, 61: 621-634
[90]
68 Seung H S. How the brain keeps the eyes still. Proc Natl Acad Sci USA, 1996, 93: 13339-13344
[91]
69 Miri A, Daie K, Arrenberg A B, et al. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat Neurosci, 2011, 14: 1150-1159
[92]
70 Aizenberg M, Schuman E M. Cerebellar-dependent learning in larval zebrafish. J Neurosci, 2011, 31: 8708-8712
[93]
71 Hinz F I, Aizenberg M, Tushev G, et al. Protein synthesis-dependent associative long-term memory in larval zebrafish. J Neurosci, 2013, 33: 15382-15387