[1] | Schapira AH (2012) Mitochondrial diseases. Lancet 379: 1825–1834. doi: 10.1016/S0140-6736(11)61305-6. pmid:22482939
|
[2] | Ylikallio E, Suomalainen A (2012) Mechanisms of mitochondrial diseases. Ann Med 44: 41–59. doi: 10.3109/07853890.2011.598547. pmid:21806499
|
[3] | Yang JL, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7: 1110–1120. doi: 10.1016/j.dnarep.2008.03.012
|
[4] | Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12: 685–698. doi: 10.1038/nrc3365. pmid:23001348
|
[5] | Milone M (2012) Mitochondria, diabetes, and Alzheimer's disease. Diabetes 61: 991–992. doi: 10.2337/db12-0209. pmid:22517655
|
[6] | Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, et al. (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322: 254–262. doi: 10.1016/j.jns.2012.05.030. pmid:22669122
|
[7] | Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH (2009) Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta 1790: 1021–1029. doi: 10.1016/j.bbagen.2009.04.012. pmid:19397952
|
[8] | Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423. pmid:15164064 doi: 10.1038/nature02517
|
[9] | Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13: 659–671. doi: 10.1038/nrm3439. pmid:22992591
|
[10] | Dujon B (1981) Mitochondrial genetics and functions. In: Jones EW, Broach JR, editors. The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. pp. 505–592.
|
[11] | Poulton J, Deadman ME, Bindoff L, Morten K, Land J, et al. (1993) Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human Molecular Genetics 2: 23–30. pmid:8490619 doi: 10.1093/hmg/2.1.23
|
[12] | Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous DNA recombination activity. Journal of Biological Chemistry 271: 27536–27543. pmid:8910339 doi: 10.1074/jbc.271.44.27536
|
[13] | Lakshmipathy U, Campbell C (1999) Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Research 27: 1198–1204. pmid:9927756 doi: 10.1093/nar/27.4.1198
|
[14] | Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2: 1007–1012. pmid:11713192 doi: 10.1093/embo-reports/kve233
|
[15] | Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, et al. (2004) Recombination of human mitochondrial DNA. Science 304: 981. pmid:15143273 doi: 10.1126/science.1096342
|
[16] | Ling F, Makishima F, Morishima N, Shibata T (1995) A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J 14: 4090–4101. pmid:7664749
|
[17] | Ling F, Morioka H, Ohtsuka E, Shibata T (2000) A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res 28: 4956–4963. pmid:11121487 doi: 10.1093/nar/28.24.4956
|
[18] | Ling F, Shibata T (2002) Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA. EMBO J 21: 4730–4740. pmid:12198175 doi: 10.1093/emboj/cdf466
|
[19] | MacAlpine DM, Perlman PS, Butow RA (1998) The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 95: 6739–6743. pmid:9618482 doi: 10.1073/pnas.95.12.6739
|
[20] | Sembongi H, Di Re M, Bokori-Brown M, Holt IJ (2007) The yeast Holliday junction resolvase, CCE1, can restore wild-type mitochondrial DNA to human cells carrying rearranged mitochondrial DNA. Hum Mol Genet 16: 2306–2314. pmid:17666405 doi: 10.1093/hmg/ddm182
|
[21] | Ezekiel UR, Zassenhaus HP (1993) Localization of a cruciform cutting endonuclease to yeast mitochondria. Mol Gen Genet 240: 414–418. pmid:8413191
|
[22] | Mookerjee SA, Sia EA (2006) Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae. Mutat Res 595: 91–106. pmid:16337661 doi: 10.1016/j.mrfmmm.2005.10.006
|
[23] | McIlwraith MJ, Van Dyck E, Masson JY, Stasiak AZ, Stasiak A, et al. (2000) Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol 304: 151–164. pmid:11080452 doi: 10.1006/jmbi.2000.4180
|
[24] | Davis AP, Symington LS (2004) RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24: 2344–2351. pmid:14993274 doi: 10.1128/mcb.24.6.2344-2351.2004
|
[25] | Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38: 233–271. pmid:15568977 doi: 10.1146/annurev.genet.38.072902.091500
|
[26] | Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630–670, table of contents. pmid:12456786 doi: 10.1128/mmbr.66.4.630-670.2002
|
[27] | Kagawa W, Kurumizaka H, Ikawa S, Yokoyama S, Shibata T (2001) Homologous pairing promoted by the human Rad52 protein. J Biol Chem 276: 35201–35208. pmid:11454867 doi: 10.1074/jbc.m104938200
|
[28] | Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20: 5300–5309. pmid:10866686 doi: 10.1128/mcb.20.14.5300-5309.2000
|
[29] | Prado F, Cortes-Ledesma F, Huertas P, Aguilera A (2003) Mitotic recombination in Saccharomyces cerevisiae. Curr Genet 42: 185–198. pmid:12589470
|
[30] | Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11: 208–219. doi: 10.1038/nrm2852. pmid:20177396
|
[31] | Newton KJ, Gabay-Laughan S, De Paepe R (2004) Mitochondrial mutations in plants. In: Day DA, Millar AH, Whelan J, editors. Plant Mitochondria: From Genome to Function. Great Britain: Kluwer Academic Publishers. pp. 121–142.
|
[32] | Yui R, Ohno Y, Matsuura ET (2003) Accumulation of deleted mitochondrial DNA in aging Drosophila melanogaster. Genes Genet Syst 78: 245–251. pmid:12893966 doi: 10.1266/ggs.78.245
|
[33] | Bianchi NO, Bianchi MS, Richard SM (2001) Mitochondrial genome instability in human cancers. Mutat Res 488: 9–23. pmid:11223402 doi: 10.1016/s1383-5742(00)00063-6
|
[34] | Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, et al. (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40: 275–279. doi: 10.1038/ng.f.94. pmid:18305478
|
[35] | Samach A, Melamed-Bessudo C, Avivi-Ragolski N, Pietrokovski S, Levy AA (2011) Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes. Plant Cell 23: 4266–4279. doi: 10.1105/tpc.111.091744. pmid:22202891
|
[36] | Sage JM, Gildemeister OS, Knight KL (2010) Discovery of a Novel Function for Human Rad51: Maintenance of the mitochondrial genome. Journal of Biological Chemistry 285: 18984–18990. doi: 10.1074/jbc.M109.099846. pmid:20413593
|
[37] | Sage JM, Knight KL (2013) Human Rad51 promotes mitochondrial DNA synthesis under conditions of increased replication stress. Mitochondrion 13: 350–356. doi: 10.1016/j.mito.2013.04.004. pmid:23591384
|
[38] | Phadnis N, Sia RA, Sia EA (2005) Analysis of repeat-mediated deletions in the mitochondrial genome of Saccharomyces cerevisiae. Genetics 171: 1549–1559. pmid:16157666 doi: 10.1534/genetics.105.047092
|
[39] | Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA (2009) Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 8: 1242–1249. doi: 10.1016/j.dnarep.2009.07.008
|
[40] | Kalifa L, Quintana DF, Schiraldi LK, Phadnis N, Coles GL, et al. (2012) Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. Genetics 190: 951–964. doi: 10.1534/genetics.111.138214. pmid:22214610
|
[41] | Fritsch ES, Chabbert CD, Klaus B, Steinmetz LM (2014) A genome-wide map of mitochondrial DNA recombination in yeast. Genetics 198: 755–771. doi: 10.1534/genetics.114.166637. pmid:25081569
|
[42] | Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proceedings of the National Academy of Sciences 93: 5253–5257. doi: 10.1073/pnas.93.11.5253
|
[43] | Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE (1996) Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693–704. pmid:8849880
|
[44] | Tan G, Chen M, Foote C, Tan C (2009) Temperature-sensitive mutations made easy: generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges. Genetics 183: 13–22. doi: 10.1534/genetics.109.104794. pmid:19596904
|
[45] | Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346: 376–379. pmid:2165219 doi: 10.1038/346376a0
|
[46] | Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J (1970) The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol 52: 323–335. pmid:5485912 doi: 10.1016/0022-2836(70)90033-1
|
[47] | Liu P, Demple B (2010) DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen 51: 417–426. doi: 10.1002/em.20576. pmid:20544882
|
[48] | Shokolenko IN, Wilson GL, Alexeyev MF (2013) Persistent damage induces mitochondrial DNA degradation. DNA Repair (Amst) 12: 488–499. doi: 10.1016/j.dnarep.2013.04.023
|
[49] | de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, et al. (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. Cancer Res 61: 5378–5381. pmid:11454679
|
[50] | Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, et al. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell 10: 1637–1652. pmid:10233168 doi: 10.1091/mbc.10.5.1637
|
[51] | Bacman SR, Williams SL, Moraes CT (2009) Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Research 37: 4218–4226. doi: 10.1093/nar/gkp348. pmid:19435881
|
[52] | Morel F, Renoux M, Lachaume P, Alziari S (2008) Bleomycin-induced double-strand breaks in mitochondrial DNA of Drosophila cells are repaired. Mutat Res 637: 111–117. pmid:17825327 doi: 10.1016/j.mrfmmm.2007.07.007
|
[53] | Crider DG, Garcia-Rodriguez LJ, Srivastava P, Peraza-Reyes L, Upadhyaya K, et al. (2012) Rad53 is essential for a mitochondrial DNA inheritance checkpoint regulating G1 to S progression. J Cell Biol 198: 793–798. doi: 10.1083/jcb.201205193. pmid:22927468
|
[54] | Sia EA, Butler CA, Dominska M, Greenwell P, Fox TD, et al. (2000) Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97: 250–255. pmid:10618404 doi: 10.1073/pnas.97.1.250
|
[55] | Adams A, Gottschling DE, Stearns T, Kaiser CA (1997) Methods in Yeast Genetics, 1997. A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
|
[56] | Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, et al. (1991) Analysis and manipulation of yeast mitochondrial genes. In: Guthrie C, Fink GR, editors. Guide to Yeast Genetics and Molecular Biology. San Diego: Academic Press. pp. 149–165.
|
[57] | Saravanan M, Bujnicki JM, Cymerman IA, Rao DN, Nagaraja V (2004) Type II restriction endonuclease R. KpnI is a member of the HNH nuclease superfamily. Nucleic Acids Res 32: 6129–6135. pmid:15562004 doi: 10.1093/nar/gkh951
|
[58] | Diekert KdK, A. I. P. M; Kispal G.; Lill R. (2001) Isolation and Subfractionation of Mitochondria from the Yeast Saccharomyces cerevisiae. In: Pon LAS E. A., editor. Methods in Cell Biology. New York, NY: Academic Press. pp. 37–51. pmid:11381604
|
[59] | Lea DE, Coulson CA (1949) The distribution of the number of mutants in bacterial populations. J Genet 49: 264–284. pmid:24536673 doi: 10.1007/bf02986080
|
[60] | Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12: 563–575. pmid:1732731 doi: 10.1128/mcb.12.2.563
|