全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae

DOI: 10.1371/journal.pgen.1005664

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.

References

[1]  Schapira AH (2012) Mitochondrial diseases. Lancet 379: 1825–1834. doi: 10.1016/S0140-6736(11)61305-6. pmid:22482939
[2]  Ylikallio E, Suomalainen A (2012) Mechanisms of mitochondrial diseases. Ann Med 44: 41–59. doi: 10.3109/07853890.2011.598547. pmid:21806499
[3]  Yang JL, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair (Amst) 7: 1110–1120. doi: 10.1016/j.dnarep.2008.03.012
[4]  Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12: 685–698. doi: 10.1038/nrc3365. pmid:23001348
[5]  Milone M (2012) Mitochondria, diabetes, and Alzheimer's disease. Diabetes 61: 991–992. doi: 10.2337/db12-0209. pmid:22517655
[6]  Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, et al. (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322: 254–262. doi: 10.1016/j.jns.2012.05.030. pmid:22669122
[7]  Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH (2009) Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta 1790: 1021–1029. doi: 10.1016/j.bbagen.2009.04.012. pmid:19397952
[8]  Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423. pmid:15164064 doi: 10.1038/nature02517
[9]  Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13: 659–671. doi: 10.1038/nrm3439. pmid:22992591
[10]  Dujon B (1981) Mitochondrial genetics and functions. In: Jones EW, Broach JR, editors. The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. pp. 505–592.
[11]  Poulton J, Deadman ME, Bindoff L, Morten K, Land J, et al. (1993) Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human Molecular Genetics 2: 23–30. pmid:8490619 doi: 10.1093/hmg/2.1.23
[12]  Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous DNA recombination activity. Journal of Biological Chemistry 271: 27536–27543. pmid:8910339 doi: 10.1074/jbc.271.44.27536
[13]  Lakshmipathy U, Campbell C (1999) Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Research 27: 1198–1204. pmid:9927756 doi: 10.1093/nar/27.4.1198
[14]  Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2: 1007–1012. pmid:11713192 doi: 10.1093/embo-reports/kve233
[15]  Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, et al. (2004) Recombination of human mitochondrial DNA. Science 304: 981. pmid:15143273 doi: 10.1126/science.1096342
[16]  Ling F, Makishima F, Morishima N, Shibata T (1995) A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J 14: 4090–4101. pmid:7664749
[17]  Ling F, Morioka H, Ohtsuka E, Shibata T (2000) A role for MHR1, a gene required for mitochondrial genetic recombination, in the repair of damage spontaneously introduced in yeast mtDNA. Nucleic Acids Res 28: 4956–4963. pmid:11121487 doi: 10.1093/nar/28.24.4956
[18]  Ling F, Shibata T (2002) Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA. EMBO J 21: 4730–4740. pmid:12198175 doi: 10.1093/emboj/cdf466
[19]  MacAlpine DM, Perlman PS, Butow RA (1998) The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 95: 6739–6743. pmid:9618482 doi: 10.1073/pnas.95.12.6739
[20]  Sembongi H, Di Re M, Bokori-Brown M, Holt IJ (2007) The yeast Holliday junction resolvase, CCE1, can restore wild-type mitochondrial DNA to human cells carrying rearranged mitochondrial DNA. Hum Mol Genet 16: 2306–2314. pmid:17666405 doi: 10.1093/hmg/ddm182
[21]  Ezekiel UR, Zassenhaus HP (1993) Localization of a cruciform cutting endonuclease to yeast mitochondria. Mol Gen Genet 240: 414–418. pmid:8413191
[22]  Mookerjee SA, Sia EA (2006) Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae. Mutat Res 595: 91–106. pmid:16337661 doi: 10.1016/j.mrfmmm.2005.10.006
[23]  McIlwraith MJ, Van Dyck E, Masson JY, Stasiak AZ, Stasiak A, et al. (2000) Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol 304: 151–164. pmid:11080452 doi: 10.1006/jmbi.2000.4180
[24]  Davis AP, Symington LS (2004) RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24: 2344–2351. pmid:14993274 doi: 10.1128/mcb.24.6.2344-2351.2004
[25]  Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38: 233–271. pmid:15568977 doi: 10.1146/annurev.genet.38.072902.091500
[26]  Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66: 630–670, table of contents. pmid:12456786 doi: 10.1128/mmbr.66.4.630-670.2002
[27]  Kagawa W, Kurumizaka H, Ikawa S, Yokoyama S, Shibata T (2001) Homologous pairing promoted by the human Rad52 protein. J Biol Chem 276: 35201–35208. pmid:11454867 doi: 10.1074/jbc.m104938200
[28]  Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20: 5300–5309. pmid:10866686 doi: 10.1128/mcb.20.14.5300-5309.2000
[29]  Prado F, Cortes-Ledesma F, Huertas P, Aguilera A (2003) Mitotic recombination in Saccharomyces cerevisiae. Curr Genet 42: 185–198. pmid:12589470
[30]  Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11: 208–219. doi: 10.1038/nrm2852. pmid:20177396
[31]  Newton KJ, Gabay-Laughan S, De Paepe R (2004) Mitochondrial mutations in plants. In: Day DA, Millar AH, Whelan J, editors. Plant Mitochondria: From Genome to Function. Great Britain: Kluwer Academic Publishers. pp. 121–142.
[32]  Yui R, Ohno Y, Matsuura ET (2003) Accumulation of deleted mitochondrial DNA in aging Drosophila melanogaster. Genes Genet Syst 78: 245–251. pmid:12893966 doi: 10.1266/ggs.78.245
[33]  Bianchi NO, Bianchi MS, Richard SM (2001) Mitochondrial genome instability in human cancers. Mutat Res 488: 9–23. pmid:11223402 doi: 10.1016/s1383-5742(00)00063-6
[34]  Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, et al. (2008) What causes mitochondrial DNA deletions in human cells? Nat Genet 40: 275–279. doi: 10.1038/ng.f.94. pmid:18305478
[35]  Samach A, Melamed-Bessudo C, Avivi-Ragolski N, Pietrokovski S, Levy AA (2011) Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes. Plant Cell 23: 4266–4279. doi: 10.1105/tpc.111.091744. pmid:22202891
[36]  Sage JM, Gildemeister OS, Knight KL (2010) Discovery of a Novel Function for Human Rad51: Maintenance of the mitochondrial genome. Journal of Biological Chemistry 285: 18984–18990. doi: 10.1074/jbc.M109.099846. pmid:20413593
[37]  Sage JM, Knight KL (2013) Human Rad51 promotes mitochondrial DNA synthesis under conditions of increased replication stress. Mitochondrion 13: 350–356. doi: 10.1016/j.mito.2013.04.004. pmid:23591384
[38]  Phadnis N, Sia RA, Sia EA (2005) Analysis of repeat-mediated deletions in the mitochondrial genome of Saccharomyces cerevisiae. Genetics 171: 1549–1559. pmid:16157666 doi: 10.1534/genetics.105.047092
[39]  Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA (2009) Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 8: 1242–1249. doi: 10.1016/j.dnarep.2009.07.008
[40]  Kalifa L, Quintana DF, Schiraldi LK, Phadnis N, Coles GL, et al. (2012) Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae. Genetics 190: 951–964. doi: 10.1534/genetics.111.138214. pmid:22214610
[41]  Fritsch ES, Chabbert CD, Klaus B, Steinmetz LM (2014) A genome-wide map of mitochondrial DNA recombination in yeast. Genetics 198: 755–771. doi: 10.1534/genetics.114.166637. pmid:25081569
[42]  Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proceedings of the National Academy of Sciences 93: 5253–5257. doi: 10.1073/pnas.93.11.5253
[43]  Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE (1996) Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693–704. pmid:8849880
[44]  Tan G, Chen M, Foote C, Tan C (2009) Temperature-sensitive mutations made easy: generating conditional mutations by using temperature-sensitive inteins that function within different temperature ranges. Genetics 183: 13–22. doi: 10.1534/genetics.109.104794. pmid:19596904
[45]  Thorsness PE, Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346: 376–379. pmid:2165219 doi: 10.1038/346376a0
[46]  Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J (1970) The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol 52: 323–335. pmid:5485912 doi: 10.1016/0022-2836(70)90033-1
[47]  Liu P, Demple B (2010) DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen 51: 417–426. doi: 10.1002/em.20576. pmid:20544882
[48]  Shokolenko IN, Wilson GL, Alexeyev MF (2013) Persistent damage induces mitochondrial DNA degradation. DNA Repair (Amst) 12: 488–499. doi: 10.1016/j.dnarep.2013.04.023
[49]  de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, et al. (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice. Cancer Res 61: 5378–5381. pmid:11454679
[50]  Nishioka K, Ohtsubo T, Oda H, Fujiwara T, Kang D, et al. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol Biol Cell 10: 1637–1652. pmid:10233168 doi: 10.1091/mbc.10.5.1637
[51]  Bacman SR, Williams SL, Moraes CT (2009) Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Research 37: 4218–4226. doi: 10.1093/nar/gkp348. pmid:19435881
[52]  Morel F, Renoux M, Lachaume P, Alziari S (2008) Bleomycin-induced double-strand breaks in mitochondrial DNA of Drosophila cells are repaired. Mutat Res 637: 111–117. pmid:17825327 doi: 10.1016/j.mrfmmm.2007.07.007
[53]  Crider DG, Garcia-Rodriguez LJ, Srivastava P, Peraza-Reyes L, Upadhyaya K, et al. (2012) Rad53 is essential for a mitochondrial DNA inheritance checkpoint regulating G1 to S progression. J Cell Biol 198: 793–798. doi: 10.1083/jcb.201205193. pmid:22927468
[54]  Sia EA, Butler CA, Dominska M, Greenwell P, Fox TD, et al. (2000) Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97: 250–255. pmid:10618404 doi: 10.1073/pnas.97.1.250
[55]  Adams A, Gottschling DE, Stearns T, Kaiser CA (1997) Methods in Yeast Genetics, 1997. A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
[56]  Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, et al. (1991) Analysis and manipulation of yeast mitochondrial genes. In: Guthrie C, Fink GR, editors. Guide to Yeast Genetics and Molecular Biology. San Diego: Academic Press. pp. 149–165.
[57]  Saravanan M, Bujnicki JM, Cymerman IA, Rao DN, Nagaraja V (2004) Type II restriction endonuclease R. KpnI is a member of the HNH nuclease superfamily. Nucleic Acids Res 32: 6129–6135. pmid:15562004 doi: 10.1093/nar/gkh951
[58]  Diekert KdK, A. I. P. M; Kispal G.; Lill R. (2001) Isolation and Subfractionation of Mitochondria from the Yeast Saccharomyces cerevisiae. In: Pon LAS E. A., editor. Methods in Cell Biology. New York, NY: Academic Press. pp. 37–51. pmid:11381604
[59]  Lea DE, Coulson CA (1949) The distribution of the number of mutants in bacterial populations. J Genet 49: 264–284. pmid:24536673 doi: 10.1007/bf02986080
[60]  Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12: 563–575. pmid:1732731 doi: 10.1128/mcb.12.2.563

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133