全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Enhancer Runaway and the Evolution of Diploid Gene Expression

DOI: 10.1371/journal.pgen.1005665

Full-Text   Cite this paper   Add to My Lib

Abstract:

Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation.

References

[1]  Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution (N Y) 61: 995–1016. doi: 10.1111/j.1558-5646.2007.00105.x
[2]  Carroll SB (2008) Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution. Cell 134: 25–36. doi: 10.1016/j.cell.2008.06.030. pmid:18614008
[3]  King M, Wilson A (1975) Evolution at two levels in humans and chimpanzees. Science 188(80-) : 107–116. doi: 10.1126/science.1090005
[4]  Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305: 1462–1465. pmid:15353802 doi: 10.1126/science.1098095
[5]  Wilson AC, Maxson LR, Sarich VM (1974) Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc Natl Acad Sci U S A 71: 2843–2847. pmid:4212492 doi: 10.1073/pnas.71.7.2843
[6]  Cooper T (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc Natl Acad Sci U S A 100: 1072–1077. pmid:12538876 doi: 10.1073/pnas.0334340100
[7]  Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, et al. (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 1377–1419. pmid:12777501
[8]  Fay JC, Wittkopp PJ (2008) Evaluating the role of natural selection in the evolution of gene regulation. Heredity (Edinb) 100: 191–199. doi: 10.1038/sj.hdy.6801000
[9]  Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13: 59–69. doi: 10.1038/nrg3095
[10]  Pastinen T, Hudson TJ (2004) Cis-acting regulatory variation in the human genome. Science 306: 647–650. pmid:15499010 doi: 10.1126/science.1101659
[11]  Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen K-Y, et al. (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 33: 422–425. pmid:12567189 doi: 10.1038/ng1094
[12]  Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, et al. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464: 768–772. doi: 10.1038/nature08872. pmid:20220758
[13]  Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci U S A 96: 9721–9726. pmid:10449761 doi: 10.1073/pnas.96.17.9721
[14]  Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433: 481–487. pmid:15690032 doi: 10.1038/nature03235
[15]  Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N (1998) An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos Trans R Soc B Biol Sci 353: 1707–1711. doi: 10.1098/rstb.1998.0322
[16]  Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, et al. (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428: 717–723. pmid:15085123 doi: 10.1038/nature02415
[17]  Wagner GP, Lynch VJ (2008) The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 23: 377–385. doi: 10.1016/j.tree.2008.03.006. pmid:18501470
[18]  Jenkins DJ, Stekel DJ (2010) De Novo Evolution of Complex, Global and Hierarchical Gene Regulatory Mechanisms. J Mol Evol 71: 128–140. doi: 10.1007/s00239-010-9369-4. pmid:20680619
[19]  Jenkins DJ, Stekel DJ (2009) A New Model for Investigating the Evolution of Transcription Control Networks. Artif Life 15: 259–291. doi: 10.1162/artl.2009.Stekel.006. pmid:19254178
[20]  Crombach A, Hogeweg P (2008) Evolution of Evolvability in Gene Regulatory Networks. PLoS Comput Biol 4: e1000112. doi: 10.1371/journal.pcbi.1000112. pmid:18617989
[21]  Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and evolvability in genetic regulatory networks. J Theor Biol 245: 433–448. pmid:17188715 doi: 10.1016/j.jtbi.2006.10.027
[22]  Quayle AP, Bullock S (2006) Modelling the evolution of genetic regulatory networks. J Theor Biol 238: 737–753. pmid:16095624 doi: 10.1016/j.jtbi.2005.06.020
[23]  Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386: 569–577. pmid:9121580 doi: 10.1038/386569a0
[24]  Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: 613–626. doi: 10.1038/nrg3207. pmid:22868264
[25]  Villar D, Flicek P, Odom DT (2014) Evolution of transcription factor binding in metazoans [mdash] mechanisms and functional implications. Nat Rev Genet 15: 221–233. doi: 10.1038/nrg3481. pmid:24590227
[26]  Rockman M V, Wray GA (2002) Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol 19: 1991–2004. pmid:12411608 doi: 10.1093/oxfordjournals.molbev.a004023
[27]  Knight JC (2004) Allele-specific gene expression uncovered. Trends Genet 20: 113–116. pmid:15049300 doi: 10.1016/j.tig.2004.01.001
[28]  Lo HS, Wang Z, Hu Y, Yang HH, Gere S, et al. (2003) Allelic variation in gene expression is common in the human genome. Genome Res 13: 1855–1862. pmid:12902379
[29]  Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci 103: 5425–5430. pmid:16567645 doi: 10.1073/pnas.0507648103
[30]  Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, et al. (2004) A Neutral Model of Transcriptome Evolution. PLoS Biol 2: e132. pmid:15138501 doi: 10.1371/journal.pbio.0020132
[31]  Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, et al. (2005) The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat Genet 37: 544–548. pmid:15852004 doi: 10.1038/ng1554
[32]  Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP (2006) Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature 440: 242–245. pmid:16525476 doi: 10.1038/nature04559
[33]  Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–567. pmid:10676967 doi: 10.1038/35000615
[34]  Lemos B, Meiklejohn CD, Cáceres M, Hartl DL (2005) Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. Evolution 59: 126–137. pmid:15792233 doi: 10.1554/04-251
[35]  Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the Drosophila melanogaster subgroup. Nat Genet 33: 138–144. pmid:12548287 doi: 10.1038/ng1086
[36]  Whitehead A, Crawford DL (2006) Variation within and among species in gene expression: raw material for evolution. Mol Ecol 15: 1197–1211. pmid:16626448 doi: 10.1111/j.1365-294x.2006.02868.x
[37]  Manna F, Martin G, Lenormand T (2011) Fitness Landscapes: An Alternative Theory for the Dominance of Mutation. Genetics 189: 923–937. doi: 10.1534/genetics.111.132944. pmid:21890744
[38]  Otto SP, Goldstein DB (1992) Recombination and the evolution of diploidy. Genetics 131: 745–751. pmid:1628815
[39]  Cailleau A, Cheptou P-O, Lenormand T (2010) Ploidy and the evolution of endosperm of flowering plants. Genetics 184: 439–453. doi: 10.1534/genetics.109.110833. pmid:19933875
[40]  Fisher RA (1931) The Evolution of Dominance. Biol Rev 6: 345–368. doi: 10.1111/j.1469-185x.1931.tb01030.x
[41]  Austin B, Trivers R, Burt A (2009) Genes in conflict: the biology of selfish genetic elements. Harvard University Press.
[42]  Kirkpatrick M (1982) Sexual selection and the evolution of female choice. Evolution (N Y): 1–12. doi: 10.2307/2407961
[43]  Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, et al. (2010) Polymorphic Cis- and Trans-Regulation of Human Gene Expression. PLoS Biol 8: e1000480. doi: 10.1371/journal.pbio.1000480. pmid:20856902
[44]  Kuo D, Licon K, Bandyopadhyay S, Chuang R, Luo C, et al. (2010) Coevolution within a transcriptional network by compensatory trans and cis mutations. Genome Res: 1–7. doi: 10.1101/gr.111765.110
[45]  Proulx SR, Phillips PC (2005) The Opportunity for Canalization and the Evolution of Genetic Networks. Am Nat 165: 147–162. pmid:15729647 doi: 10.1086/426873
[46]  Wagner GP, Bürger R (1985) On the evolution of dominance modifiers II: a non-equilibrium approach to the evolution of genetic systems. J Theor Biol 113: 475–500. pmid:3999784 doi: 10.1016/s0022-5193(85)80034-5
[47]  Otto SP, Yong P (2002) The evolution of gene duplicates. Homol Eff 46: 451–483. doi: 10.1016/s0065-2660(02)46017-8
[48]  Otto SP, Bourguet D (1999) Balanced Polymorphisms and the Evolution of Dominance. Am Nat 153: 561–574. doi: 10.1086/303204
[49]  Bourguet D (1999) The evolution of dominance. Heredity (Edinb) 83: 1–4. doi: 10.1038/sj.hdy.6885600
[50]  Wright S (1929) Fisher’s Theory of Dominance. Am Nat 63: 274–279. doi: 10.1086/280260
[51]  Masel J, Siegal ML (2009) Robustness: mechanisms and consequences. Trends Genet 25: 395–403. doi: 10.1016/j.tig.2009.07.005. pmid:19717203
[52]  Denby CM, Im JH, Yu RC, Pesce CG, Brem RB (2012) Negative feedback confers mutational robustness in yeast transcription factor regulation. Proc Natl Acad Sci 109: 3874–3878. doi: 10.1073/pnas.1116360109. pmid:22355134
[53]  Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20: 433–440. pmid:9670816 doi: 10.1002/(sici)1521-1878(199805)20:5<433::aid-bies10>3.0.co;2-2
[54]  Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, et al. (2007) A genome-wide association study of global gene expression. Nat Genet 39: 1202–1207. pmid:17873877 doi: 10.1038/ng2109
[55]  Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of complex features. Nature 423: 139–144. pmid:12736677 doi: 10.1038/nature01568
[56]  Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci 104: 8597–8604. pmid:17494740 doi: 10.1073/pnas.0702207104
[57]  Soyer OS, Bonhoeffer S (2006) Evolution of complexity in signaling pathways. Proc Natl Acad Sci 103: 16337–16342. pmid:17060629 doi: 10.1073/pnas.0604449103
[58]  Biggin MD (2014) Animal Transcription Networks as Highly Connected, Quantitative Continua. Dev Cell 21: 611–626. doi: 10.1016/j.devcel.2011.09.008
[59]  Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, et al. (2005) The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. Proc Natl Acad Sci U S A 102: 4960–4965. pmid:15793007 doi: 10.1073/pnas.0500373102
[60]  Lenormand T, Roze D, Rousset F (2015) Stochasticity in evolution. Trends Ecol Evol 24: 157–165. doi: 10.1016/j.tree.2008.09.014
[61]  Weirauch MT, Hughes TR (2010) Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet 26: 66–74. doi: 10.1016/j.tig.2009.12.002. pmid:20083321
[62]  Yvert G, Brem RB, Whittle J, Akey JM, Foss E, et al. (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35: 57–64. doi: 10.1038/ng1222
[63]  Tirosh I, Reikhav S, Levy AA, Barkai N (2009) A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324: 659–662. doi: 10.1126/science.1169766. pmid:19407207
[64]  Wittkopp PJ, Haerum BK, Clark AG (2008) Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet 40: 346–350. doi: 10.1038/ng.77. pmid:18278046
[65]  Cowles CR, Hirschhorn JN, Altshuler D, Lander ES (2002) Detection of regulatory variation in mouse genes. Nat Genet 32: 432–437. pmid:12410233 doi: 10.1038/ng992
[66]  Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430: 85–88. pmid:15229602 doi: 10.1038/nature02698
[67]  He F, Zhang X, Hu J, Turck F, Dong X, et al. (2012) Genome-wide Analysis of Cis-regulatory Divergence between Species in the Arabidopsis Genus. Mol Biol Evol 29: 3385–3395. doi: 10.1093/molbev/mss146. pmid:22641789
[68]  Steige KA, Reimeg?rd J, Koenig D, Scofield DG, Slotte T (2015) Cis-Regulatory Changes Associated with a Recent Mating System Shift and Floral Adaptation in Capsella. Mol Biol Evol. doi: 10.1093/molbev/msv169
[69]  Mellert DJ, Truman JW (2012) Transvection Is Common Throughout the Drosophila Genome. Genetics 191: 1129–1141. doi: 10.1534/genetics.112.140475. pmid:22649078
[70]  Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, et al. (2010) Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 123: 4063–4075. doi: 10.1242/jcs.066498. pmid:21084563
[71]  Rieder D, Trajanoski Z, McNally JG (2012) Transcription factories. Front Genet 3: 221. doi: 10.3389/fgene.2012.00221. pmid:23109938
[72]  Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, et al. (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 97: 11383–11390. pmid:11027339 doi: 10.1073/pnas.97.21.11383
[73]  Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova G V (2012) Genetic recombination is directed away from functional genomic elements in mice. Nature 485: 642–645. doi: 10.1038/nature11089. pmid:22660327
[74]  Sen R, Grosschedl R (2010) Memories of lost enhancers. Genes Dev 24: 973–979. doi: 10.1101/gad.1930610. pmid:20478992
[75]  Nagylaki T (1993) The evolution of multilocus systems under weak selection. Genetics 134: 627–647. pmid:8325492
[76]  Roze D (2014) Selection for sex in finite populations. J Evol Biol 27: 1304–1322. doi: 10.1111/jeb.12344. pmid:24666571
[77]  Kimura M (1964) Diffusion Models in Population Genetics. J Appl Stat 1: 177–232. doi: 10.2307/3211856
[78]  Manna F, Gallet R, Martin G, Lenormand T (2012) The high-throughput yeast deletion fitness data and the theories of dominance. J Evol Biol 25: 892–903. doi: 10.1111/j.1420-9101.2012.02483.x. pmid:22409241

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133