[1] | Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013 Nov;14(11):751–764. pmid:24105273 doi: 10.1038/nrg3483
|
[2] | Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. Parallel Molecular Evolution in an Herbivore Community. Science. 2012;337(6102):1634–1637. Available from: . doi: 10.1126/science.1226630. pmid:23019645
|
[3] | Martin A, Orgogozo V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution. 2013;67(5):1235–1250. Available from: . pmid:23617905
|
[4] | Arendt J, Reznick D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol. 2008 Jan;23(1):26–32. doi: 10.1016/j.tree.2007.09.011. pmid:18022278
|
[5] | Pennings PS, Hermisson J. Soft Sweeps II—Molecular Population Genetics of Adaptation from Recurrent Mutation or Migration. Mol Biol Evol. 2006;p. msj117. Available from: .
|
[6] | Ralph P, Coop G. Parallel Adaptation: One or Many Waves of Advance of an Advantageous Allele? Genetics. 2010;186(2):647–668. Available from: . doi: 10.1534/genetics.110.119594. pmid:20660645
|
[7] | Orr HA, Betancourt AJ. Haldane’s sieve and adaptation from the standing genetic variation. Genetics. 2001 Feb;157(2):875–884. pmid:11157004
|
[8] | Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005 Apr;169(4):2335–2352. doi: 10.1534/genetics.104.036947. pmid:15716498
|
[9] | Slatkin M. Gene Flow and Selection in a Cline. Genetics. 1973;75(4):733–756. Available from: . pmid:4778791
|
[10] | Kruckeberg AR. Intraspecific Variability in the Response of Certain Native Plant Species to Serpentine Soil. American Journal of Botany. 1951;38(6):pp. 408–419. doi: 10.2307/2438248.
|
[11] | Macnair MR. Why the evolution of resistance to anthropogenic toxins normally involves major gene changes: the limits to natural selection. Genetica. 1991;84(3):213–219. doi: 10.1007/BF00127250.
|
[12] | Schat H, Vooijs R, Kuiper E. Identical Major Gene Loci for Heavy Metal Tolerances that Have Independently Evolved in Different Local Populations and Subspecies of Silene vulgaris. Evolution. 1996;50(5):pp. 1888–1895. doi: 10.2307/2410747.
|
[13] | Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet. 2010 Jan;42(3):260–3. doi: 10.1038/ng.515. pmid:20101244
|
[14] | Benson SB. Concealing coloration among some desert rodents of the southwestern United States. No. v. 40 in University of California publications in zoology. University of California Press; 1933. Available from: .
|
[15] | Dice LR, Blossom PM. Studies of Mammalian Ecology in Southwestern North America With Special Attention to the Colors of Desert Mammals. Carnegie Institution; 1937.
|
[16] | Kaufman DW. Adaptive Coloration in Peromyscus polionotus: Experimental Selection by Owls. Journal of Mammalogy. 1974;55(2):pp. 271–283. doi: 10.2307/1378997.
|
[17] | Hoekstra HE, Nachman MW. Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol Ecol. 2003 May;12:1185–1194. Available from: . doi: 10.1046/j.1365-294X.2003.01788.x. pmid:12694282
|
[18] | Dice LR. Ecologic and Genetic Variability within Species of Peromyscus. The American Naturalist. 1940;74(752):pp. 212–221. Available from: . doi: 10.1086/280889.
|
[19] | Steiner CC, Rompler H, Boettger LM, Schoneberg T, Hoekstra HE. The Genetic Basis of Phenotypic Convergence in Beach Mice: Similar Pigment Patterns but Different Genes. Mol Biol Evol. 2009;26(1):35–45. Available from: . doi: 10.1093/molbev/msn218. pmid:18832078
|
[20] | Kingsley EP, Manceau M, Wiley CD, Hoekstra HE. Melanism in Peromyscus is caused by independent mutations in agouti. PLoS ONE. 2009;4:e6435. doi: 10.1371/journal.pone.0006435. pmid:19649329
|
[21] | Rosenblum EB, R?mpler H, Sch?neberg T, Hoekstra HE. Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proceedings of the National Academy of Sciences. 2010;107(5):2113–2117. Available from: . doi: 10.1073/pnas.0911042107.
|
[22] | Levin SA, Muller-Landau HC, Nathan R, Chave J. The Ecology and Evolution of Seed Dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst. 2003;34:575–604. doi: 10.1146/annurev.ecolsys.34.011802.132428.
|
[23] | Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci U S A. 2014 Nov;111(46):4911–4919. Available from: . doi: 10.1073/pnas.1404663111.
|
[24] | Haldane JBS. The theory of a cline. J Genet. 1948 Jan;48(3):277–284. doi: 10.1007/BF02986626. pmid:18905075
|
[25] | Fisher RA. Gene Frequencies in a Cline Determined by Selection and Diffusion. Biometrics. 1950;6(4):pp. 353–361. doi: 10.2307/3001780. pmid:14791572
|
[26] | Nagylaki T. Conditions for the existence of clines. Genetics. 1975;80(3):595–615. Available from: .
|
[27] | Conley C. An application of Wazewski’s method to a non-linear boundary value problem which arises in population genetics. Journal of Mathematical Biology. 1975;2(3):241–249. doi: 10.1007/BF00277153.
|
[28] | Lenormand T. Gene flow and the limits to natural selection. Trends in Ecology & Evolution. 2002;17(4):183—189. doi: 10.1016/S0169-5347(02)02497-7.
|
[29] | Barton NH. The probability of establishment of an advantageous mutant in a subdivided population. Genetics Research. 1987;50(1):35–40. doi: 10.1017/S0016672300023314.
|
[30] | Pollak E. On the Survival of a Gene in a Subdivided Population. Journal of Applied Probability. 1966;3(1):142–155. doi: 10.2307/3212043.
|
[31] | Haldane JBS. A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation. Mathematical Proceedings of the Cambridge Philosophical Society. 1927 7;23(07):838–844. doi: 10.1017/S0305004100015644.
|
[32] | Fisher RA. The genetical theory of natural selection. Oxford: Oxford University Press; 1930. Available from: .
|
[33] | Maruyama T. On the fixation probability of mutant genes in a subdivided population. Genetics Research. 1970;15(02):221–225. doi: 10.1017/S0016672300001543.
|
[34] | Cherry JL, Wakeley J. A diffusion approximation for selection and drift in a subdivided population. Genetics. 2003 Jan;163(1):421–428. pmid:12586727
|
[35] | Cantrell RS, Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics. 1989 0;112(3–4):293–318. doi: 10.1017/S030821050001876X.
|
[36] | Lou Y, Yanagida E. Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Japan J Indust Appl Math. 2006;23(3):275–292. Available from: . doi: 10.1007/BF03167595.
|
[37] | NEQwiki. NEQwiki, the nonlinear equations encyclopedia; 2013. Accessed December 17, 2014. Available from: .
|
[38] | Jagers P. Branching processes with biological applications. Wiley Series in Probability and Statistics: Applied Probability and Statistics Section Series. Wiley; 1975.
|
[39] | Geiger J. Elementary New Proofs of Classical Limit Theorems for Galton-Watson Processes. Journal of Applied Probability. 1999;36(2):pp. 301–309. Available from: . doi: 10.1239/jap/1032374454.
|
[40] | Aldous DJ. Exchangeability and related topics. In: école d’été de probabilités de Saint-Flour, XIII—1983. vol. 1117 of Lecture Notes in Math. Berlin: Springer; 1985. p. 1–198. Available from: .
|
[41] | Donnelly P, Joyce P. Continuity and weak convergence of ranked and size-biased permutations on the infinite simplex. Stochastic Process Appl. 1989;31(1):89–103. doi: 10.1016/0304-4149(89)90104-X.
|
[42] | Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. Available from: . doi: 10.1017/S0016672300014634.
|
[43] | Barton NH, Etheridge AM, Kelleher J, Véber A. Genetic hitchhiking in spatially extended populations. Theoretical Population Biology. 2013;(0):–. Available from: .
|
[44] | Barton N. Gene flow past a cline. Heredity. 1979 Dec;43(3):333–339. doi: 10.1038/hdy.1979.86.
|
[45] | Borodin AN, Salminen P. Handbook of Brownian motion: facts and formulae. Springer; 2002.
|
[46] | Nachman MW, Hoekstra HE, D’Agostino SL. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A. 2003 Apr;100(9):5268–5273. doi: 10.1073/pnas.0431157100. pmid:12704245
|
[47] | Hoekstra HE, Krenz JG, Nachman MW. Local adaptation in the rock pocket mouse (Chaetodipus intermedius): natural selection and phylogenetic history of populations. Heredity. 2005 Nov;94(2):217–228. doi: 10.1038/sj.hdy.6800600. pmid:15523507
|
[48] | Hoekstra HE, Drumm KE, Nachman MW. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution. 2004 Jun;58(6):1329–1341. Available from: . doi: 10.1554/03-418. pmid:15266981
|
[49] | French NR, Tagami TY, Hayden P. Dispersal in a Population of Desert Rodents. Journal of Mammalogy. 1968;49(2):pp. 272–280. doi: 10.2307/1377984.
|
[50] | Allred DM, Beck DE. Range of Movement and Dispersal of Some Rodents at the Nevada Atomic Test Site. Journal of Mammalogy. 1963;44(2):pp. 190–200. doi: 10.2307/1377452.
|
[51] | Hoekstra HE. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb). 2006 Sep;97(3):222–234. Available from: . doi: 10.1038/sj.hdy.6800861.
|
[52] | Messer PW, Petrov DA. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol (Amst). 2013 Nov;28(11):659–669. doi: 10.1016/j.tree.2013.08.003.
|
[53] | Wilson BA, Petrov DA, Messer PW. Soft selective sweeps in complex demographic scenarios. Genetics. 2014 Oct;198(2):669–684. doi: 10.1534/genetics.114.165571. pmid:25060100
|
[54] | Ralph PL, Coop G. The role of standing variation in geographic convergent adaptation. The American Naturalist. 2015;.
|
[55] | Slatkin M, Wiehe T. Genetic hitch-hiking in a subdivided population. Genet Res. 1998 Apr;71(2):155–160. doi: 10.1017/S001667239800319X. pmid:9717437
|
[56] | Kim Y, Maruki T. Hitchhiking effect of a beneficial mutation spreading in a subdivided population. Genetics. 2011 Sep;189(1):213–226. Available from: . doi: 10.1534/genetics.111.130203. pmid:21705748
|
[57] | Barton NH. Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci. 2000 Nov;355(1403):1553–1562. Available from: . doi: 10.1098/rstb.2000.0716. pmid:11127900
|
[58] | Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns and mechanisms. Ecology. 2009 Apr;90(4):877–887. doi: 10.1890/08-0153.1. pmid:19449680
|
[59] | Censky EJ, Hodge K, Dudley J. Over-water dispersal of lizards due to hurricanes. Nature. 1998 Oct;395(6702):556–556. doi: 10.1038/26886.
|
[60] | Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. Mechanisms of long-distance seed dispersal. Trends in Ecology & Evolution. 2008;23(11):638—647. Available from: . doi: 10.1016/j.tree.2008.08.003.
|
[61] | Cantrell RS, Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. II. SIAM J Math Anal. 1991;22(4):1043–1064. doi: 10.1137/0522068.
|
[62] | Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution. 2013;Available from: . pmid:24111567
|
[63] | Kondrashov AS. Accumulation of Dobzhansky–Muller incompatibilities within a spatially structured population. Evolution. 2003 Jan;57(1):151–153. doi: 10.1554/0014-3820(2003)057%5B0151:AODMIW%5D2.0.CO;2. pmid:12643575
|
[64] | Kolmogorov A, Petrovskii I, Piscunov N. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. In: Selected Works of A.N. Kolmogorov: Mathematics and mechanics. vol. 25 of Mathematics and its Applications (Soviet Series). Dordrecht: Kluwer Academic Publishers Group; 1991. p. 1–25.
|
[65] | Fisher R. The wave of advance of advantageous genes. Ann Eugenics. 1937;7:353–369. Available from: . doi: 10.1111/j.1469-1809.1937.tb02153.x.
|
[66] | Etheridge AM. An introduction to superprocesses. vol. 20 of University Lecture Series. Providence, RI: American Mathematical Society; 2000.
|
[67] | Dawson DA. Measure-valued Markov processes. In: école d’été de Probabilités de Saint-Flour XXI—1991. vol. 1541 of Lecture Notes in Math. Berlin: Springer; 1993. p. 1–260.
|
[68] | Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Seventh ed. Elsevier/Academic Press, Amsterdam; 2007. Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
|