全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Convergent Evolution During Local Adaptation to Patchy Landscapes

DOI: 10.1371/journal.pgen.1005630

Full-Text   Cite this paper   Add to My Lib

Abstract:

Species often encounter, and adapt to, many patches of similar environmental conditions across their range. Such adaptation can occur through convergent evolution if different alleles arise in different patches, or through the spread of shared alleles by migration acting to synchronize adaptation across the species. The tension between the two reflects the constraint imposed on evolution by the underlying genetic architecture versus how effectively selection and geographic isolation act to inhibit the geographic spread of locally adapted alleles. This paper studies the balance between these two routes to adaptation in a model of continuous environments with patchy selection pressures. We address the following questions: How long does it take for a novel allele to appear in a patch where it is locally adapted through mutation? Or, through migration from another, already adapted patch? Which is more likely to occur, as a function of distance between the patches? What population genetic signal is left by the spread of migrant alleles? To answer these questions we examine the family structure underlying migration–selection equilibrium surrounding an already adapted patch, treating those rare families that reach new patches as spatial branching processes. A main result is that patches further apart than a critical distance will likely evolve independent locally adapted alleles; this distance is proportional to the spatial scale of selection (, where σ is the dispersal distance and sm is the selective disadvantage of these alleles between patches), and depends linearly on log(sm/μ), where μ is the mutation rate. This provides a way to understand the role of geographic separation between patches in promoting convergent adaptation and the genomic signals it leaves behind. We illustrate these ideas using the convergent evolution of cryptic coloration in the rock pocket mouse, Chaetodipus intermedius, as an empirical example.

References

[1]  Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013 Nov;14(11):751–764. pmid:24105273 doi: 10.1038/nrg3483
[2]  Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. Parallel Molecular Evolution in an Herbivore Community. Science. 2012;337(6102):1634–1637. Available from: . doi: 10.1126/science.1226630. pmid:23019645
[3]  Martin A, Orgogozo V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution. 2013;67(5):1235–1250. Available from: . pmid:23617905
[4]  Arendt J, Reznick D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol. 2008 Jan;23(1):26–32. doi: 10.1016/j.tree.2007.09.011. pmid:18022278
[5]  Pennings PS, Hermisson J. Soft Sweeps II—Molecular Population Genetics of Adaptation from Recurrent Mutation or Migration. Mol Biol Evol. 2006;p. msj117. Available from: .
[6]  Ralph P, Coop G. Parallel Adaptation: One or Many Waves of Advance of an Advantageous Allele? Genetics. 2010;186(2):647–668. Available from: . doi: 10.1534/genetics.110.119594. pmid:20660645
[7]  Orr HA, Betancourt AJ. Haldane’s sieve and adaptation from the standing genetic variation. Genetics. 2001 Feb;157(2):875–884. pmid:11157004
[8]  Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005 Apr;169(4):2335–2352. doi: 10.1534/genetics.104.036947. pmid:15716498
[9]  Slatkin M. Gene Flow and Selection in a Cline. Genetics. 1973;75(4):733–756. Available from: . pmid:4778791
[10]  Kruckeberg AR. Intraspecific Variability in the Response of Certain Native Plant Species to Serpentine Soil. American Journal of Botany. 1951;38(6):pp. 408–419. doi: 10.2307/2438248.
[11]  Macnair MR. Why the evolution of resistance to anthropogenic toxins normally involves major gene changes: the limits to natural selection. Genetica. 1991;84(3):213–219. doi: 10.1007/BF00127250.
[12]  Schat H, Vooijs R, Kuiper E. Identical Major Gene Loci for Heavy Metal Tolerances that Have Independently Evolved in Different Local Populations and Subspecies of Silene vulgaris. Evolution. 1996;50(5):pp. 1888–1895. doi: 10.2307/2410747.
[13]  Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet. 2010 Jan;42(3):260–3. doi: 10.1038/ng.515. pmid:20101244
[14]  Benson SB. Concealing coloration among some desert rodents of the southwestern United States. No. v. 40 in University of California publications in zoology. University of California Press; 1933. Available from: .
[15]  Dice LR, Blossom PM. Studies of Mammalian Ecology in Southwestern North America With Special Attention to the Colors of Desert Mammals. Carnegie Institution; 1937.
[16]  Kaufman DW. Adaptive Coloration in Peromyscus polionotus: Experimental Selection by Owls. Journal of Mammalogy. 1974;55(2):pp. 271–283. doi: 10.2307/1378997.
[17]  Hoekstra HE, Nachman MW. Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol Ecol. 2003 May;12:1185–1194. Available from: . doi: 10.1046/j.1365-294X.2003.01788.x. pmid:12694282
[18]  Dice LR. Ecologic and Genetic Variability within Species of Peromyscus. The American Naturalist. 1940;74(752):pp. 212–221. Available from: . doi: 10.1086/280889.
[19]  Steiner CC, Rompler H, Boettger LM, Schoneberg T, Hoekstra HE. The Genetic Basis of Phenotypic Convergence in Beach Mice: Similar Pigment Patterns but Different Genes. Mol Biol Evol. 2009;26(1):35–45. Available from: . doi: 10.1093/molbev/msn218. pmid:18832078
[20]  Kingsley EP, Manceau M, Wiley CD, Hoekstra HE. Melanism in Peromyscus is caused by independent mutations in agouti. PLoS ONE. 2009;4:e6435. doi: 10.1371/journal.pone.0006435. pmid:19649329
[21]  Rosenblum EB, R?mpler H, Sch?neberg T, Hoekstra HE. Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proceedings of the National Academy of Sciences. 2010;107(5):2113–2117. Available from: . doi: 10.1073/pnas.0911042107.
[22]  Levin SA, Muller-Landau HC, Nathan R, Chave J. The Ecology and Evolution of Seed Dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst. 2003;34:575–604. doi: 10.1146/annurev.ecolsys.34.011802.132428.
[23]  Hallatschek O, Fisher DS. Acceleration of evolutionary spread by long-range dispersal. Proc Natl Acad Sci U S A. 2014 Nov;111(46):4911–4919. Available from: . doi: 10.1073/pnas.1404663111.
[24]  Haldane JBS. The theory of a cline. J Genet. 1948 Jan;48(3):277–284. doi: 10.1007/BF02986626. pmid:18905075
[25]  Fisher RA. Gene Frequencies in a Cline Determined by Selection and Diffusion. Biometrics. 1950;6(4):pp. 353–361. doi: 10.2307/3001780. pmid:14791572
[26]  Nagylaki T. Conditions for the existence of clines. Genetics. 1975;80(3):595–615. Available from: .
[27]  Conley C. An application of Wazewski’s method to a non-linear boundary value problem which arises in population genetics. Journal of Mathematical Biology. 1975;2(3):241–249. doi: 10.1007/BF00277153.
[28]  Lenormand T. Gene flow and the limits to natural selection. Trends in Ecology & Evolution. 2002;17(4):183—189. doi: 10.1016/S0169-5347(02)02497-7.
[29]  Barton NH. The probability of establishment of an advantageous mutant in a subdivided population. Genetics Research. 1987;50(1):35–40. doi: 10.1017/S0016672300023314.
[30]  Pollak E. On the Survival of a Gene in a Subdivided Population. Journal of Applied Probability. 1966;3(1):142–155. doi: 10.2307/3212043.
[31]  Haldane JBS. A Mathematical Theory of Natural and Artificial Selection, Part V: Selection and Mutation. Mathematical Proceedings of the Cambridge Philosophical Society. 1927 7;23(07):838–844. doi: 10.1017/S0305004100015644.
[32]  Fisher RA. The genetical theory of natural selection. Oxford: Oxford University Press; 1930. Available from: .
[33]  Maruyama T. On the fixation probability of mutant genes in a subdivided population. Genetics Research. 1970;15(02):221–225. doi: 10.1017/S0016672300001543.
[34]  Cherry JL, Wakeley J. A diffusion approximation for selection and drift in a subdivided population. Genetics. 2003 Jan;163(1):421–428. pmid:12586727
[35]  Cantrell RS, Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics. 1989 0;112(3–4):293–318. doi: 10.1017/S030821050001876X.
[36]  Lou Y, Yanagida E. Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Japan J Indust Appl Math. 2006;23(3):275–292. Available from: . doi: 10.1007/BF03167595.
[37]  NEQwiki. NEQwiki, the nonlinear equations encyclopedia; 2013. Accessed December 17, 2014. Available from: .
[38]  Jagers P. Branching processes with biological applications. Wiley Series in Probability and Statistics: Applied Probability and Statistics Section Series. Wiley; 1975.
[39]  Geiger J. Elementary New Proofs of Classical Limit Theorems for Galton-Watson Processes. Journal of Applied Probability. 1999;36(2):pp. 301–309. Available from: . doi: 10.1239/jap/1032374454.
[40]  Aldous DJ. Exchangeability and related topics. In: école d’été de probabilités de Saint-Flour, XIII—1983. vol. 1117 of Lecture Notes in Math. Berlin: Springer; 1985. p. 1–198. Available from: .
[41]  Donnelly P, Joyce P. Continuity and weak convergence of ranked and size-biased permutations on the infinite simplex. Stochastic Process Appl. 1989;31(1):89–103. doi: 10.1016/0304-4149(89)90104-X.
[42]  Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. Available from: . doi: 10.1017/S0016672300014634.
[43]  Barton NH, Etheridge AM, Kelleher J, Véber A. Genetic hitchhiking in spatially extended populations. Theoretical Population Biology. 2013;(0):–. Available from: .
[44]  Barton N. Gene flow past a cline. Heredity. 1979 Dec;43(3):333–339. doi: 10.1038/hdy.1979.86.
[45]  Borodin AN, Salminen P. Handbook of Brownian motion: facts and formulae. Springer; 2002.
[46]  Nachman MW, Hoekstra HE, D’Agostino SL. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A. 2003 Apr;100(9):5268–5273. doi: 10.1073/pnas.0431157100. pmid:12704245
[47]  Hoekstra HE, Krenz JG, Nachman MW. Local adaptation in the rock pocket mouse (Chaetodipus intermedius): natural selection and phylogenetic history of populations. Heredity. 2005 Nov;94(2):217–228. doi: 10.1038/sj.hdy.6800600. pmid:15523507
[48]  Hoekstra HE, Drumm KE, Nachman MW. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution. 2004 Jun;58(6):1329–1341. Available from: . doi: 10.1554/03-418. pmid:15266981
[49]  French NR, Tagami TY, Hayden P. Dispersal in a Population of Desert Rodents. Journal of Mammalogy. 1968;49(2):pp. 272–280. doi: 10.2307/1377984.
[50]  Allred DM, Beck DE. Range of Movement and Dispersal of Some Rodents at the Nevada Atomic Test Site. Journal of Mammalogy. 1963;44(2):pp. 190–200. doi: 10.2307/1377452.
[51]  Hoekstra HE. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity (Edinb). 2006 Sep;97(3):222–234. Available from: . doi: 10.1038/sj.hdy.6800861.
[52]  Messer PW, Petrov DA. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol (Amst). 2013 Nov;28(11):659–669. doi: 10.1016/j.tree.2013.08.003.
[53]  Wilson BA, Petrov DA, Messer PW. Soft selective sweeps in complex demographic scenarios. Genetics. 2014 Oct;198(2):669–684. doi: 10.1534/genetics.114.165571. pmid:25060100
[54]  Ralph PL, Coop G. The role of standing variation in geographic convergent adaptation. The American Naturalist. 2015;.
[55]  Slatkin M, Wiehe T. Genetic hitch-hiking in a subdivided population. Genet Res. 1998 Apr;71(2):155–160. doi: 10.1017/S001667239800319X. pmid:9717437
[56]  Kim Y, Maruki T. Hitchhiking effect of a beneficial mutation spreading in a subdivided population. Genetics. 2011 Sep;189(1):213–226. Available from: . doi: 10.1534/genetics.111.130203. pmid:21705748
[57]  Barton NH. Genetic hitchhiking. Philos Trans R Soc Lond B Biol Sci. 2000 Nov;355(1403):1553–1562. Available from: . doi: 10.1098/rstb.2000.0716. pmid:11127900
[58]  Reynolds AM, Rhodes CJ. The Lévy flight paradigm: random search patterns and mechanisms. Ecology. 2009 Apr;90(4):877–887. doi: 10.1890/08-0153.1. pmid:19449680
[59]  Censky EJ, Hodge K, Dudley J. Over-water dispersal of lizards due to hurricanes. Nature. 1998 Oct;395(6702):556–556. doi: 10.1038/26886.
[60]  Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. Mechanisms of long-distance seed dispersal. Trends in Ecology & Evolution. 2008;23(11):638—647. Available from: . doi: 10.1016/j.tree.2008.08.003.
[61]  Cantrell RS, Cosner C. Diffusive logistic equations with indefinite weights: population models in disrupted environments. II. SIAM J Math Anal. 1991;22(4):1043–1064. doi: 10.1137/0522068.
[62]  Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution. 2013;Available from: . pmid:24111567
[63]  Kondrashov AS. Accumulation of Dobzhansky–Muller incompatibilities within a spatially structured population. Evolution. 2003 Jan;57(1):151–153. doi: 10.1554/0014-3820(2003)057%5B0151:AODMIW%5D2.0.CO;2. pmid:12643575
[64]  Kolmogorov A, Petrovskii I, Piscunov N. A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. In: Selected Works of A.N. Kolmogorov: Mathematics and mechanics. vol. 25 of Mathematics and its Applications (Soviet Series). Dordrecht: Kluwer Academic Publishers Group; 1991. p. 1–25.
[65]  Fisher R. The wave of advance of advantageous genes. Ann Eugenics. 1937;7:353–369. Available from: . doi: 10.1111/j.1469-1809.1937.tb02153.x.
[66]  Etheridge AM. An introduction to superprocesses. vol. 20 of University Lecture Series. Providence, RI: American Mathematical Society; 2000.
[67]  Dawson DA. Measure-valued Markov processes. In: école d’été de Probabilités de Saint-Flour XXI—1991. vol. 1541 of Lecture Notes in Math. Berlin: Springer; 1993. p. 1–260.
[68]  Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. Seventh ed. Elsevier/Academic Press, Amsterdam; 2007. Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133