[1] | Schubeler D. Function and information content of DNA methylation. Nature 2015;517: 321–326, doi: 10.1038/nature14192. pmid:25592537
|
[2] | Casadesús J. & Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 2006;70: 830–856, doi: 10.1128/MMBR.00016-06. pmid:16959970
|
[3] | Pósfai J., Bhagwat A. S. & Roberts R. J. Sequence motifs specific for cytosine methyltransferases. Gene 1988;74: 261–265. pmid:3248729 doi: 10.1016/0378-1119(88)90299-5
|
[4] | Timinskas A., Butkus V. & Janulaitis A. Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 1995;157: 3–11. pmid:7607512 doi: 10.1016/0378-1119(94)00783-o
|
[5] | Murray N. E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 2000;64, 412–434. pmid:10839821 doi: 10.1128/mmbr.64.2.412-434.2000
|
[6] | Wion D. & Casadesús J. N6-methyl-adenine: an epigenetic signal for DNA–protein interactions. Nat Rev Microbiol 2006;4: 183–192, doi: 10.1038/nrmicro1350. pmid:16489347
|
[7] | Marinus M. G. & Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev 2009;33; 488–503, doi: 10.1111/j.1574-6976.2008.00159.x. pmid:19175412
|
[8] | Lu M., Campbell J. L., Boye E. & Kleckner N. SeqA: a negative modulator of replication initiation in E. coli. Cell 1994;77: 413–426. pmid:8011018 doi: 10.1016/0092-8674(94)90156-2
|
[9] | Schlagman S. L., Hattman S. & Marinus M. G. Direct role of the Escherichia coli Dam DNA methyltransferase in methylation-directed mismatch repair. J Bacteriol 1986;165: 896–900. pmid:3512529
|
[10] | Roberts D., Hoopes B. C., McClure W. R. & Kleckner N. IS10 transposition is regulated by DNA adenine methylation. Cell 1985;43: 117–130, doi:0092-8674(85)90017-0 [pii]. pmid:3000598 doi: 10.1016/0092-8674(85)90017-0
|
[11] | Peterson S. N. & Reich N. O. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 2008;383: 92–105, doi: 10.1016/j.jmb.2008.07.086. pmid:18706913
|
[12] | Collier J., McAdams H. H. & Shapiro L. A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc Natl Acad Sci USA 2007;104; 17111–17116, doi: 10.1073/pnas.0708112104. pmid:17942674
|
[13] | Militello K. T., Mandarano A. H., Varechtchouk O. & Simon R. D. Cytosine DNA methylation influences drug resistance in Escherichia coli through increased sugE expression. FEMS Microbiol Lett 2014;350: 100–106, doi: 10.1111/1574-6968.12299. pmid:24164619
|
[14] | Militello K. T. et al. Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli. FEMS Microbiol Lett 2012;328: 78–85, doi: 10.1111/j.1574-6968.2011.02482.x. pmid:22150247
|
[15] | Kahramanoglou C. et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 2012;3: 886, doi: 10.1038/ncomms1878. pmid:22673913
|
[16] | Srikhanta Y. N. et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 2009;5: e1000400, doi: 10.1371/journal.ppat.1000400. pmid:19390608
|
[17] | Srikhanta Y. N. et al. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS ONE 2011;6: e27569, doi: 10.1371/journal.pone.0027569. pmid:22162751
|
[18] | Roberts R. J., Vincze T., Posfai J. & Macelis D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010;38: D234–236, doi: 10.1093/nar/gkp874. doi:gkp874 [pii] pmid:19846593
|
[19] | Heidelberg J. F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000;406: 477–483, doi: 10.1038/35020000. pmid:10952301
|
[20] | Demarre G. & Chattoraj D. K. DNA adenine methylation is required to replicate both Vibrio cholerae chromosomes once per cell cycle. PLoS Genet 2010;6: e1000939, doi: 10.1371/journal.pgen.1000939. pmid:20463886
|
[21] | Gerding MA, Chao MC, Davis BM, & Waldor MK. Molecular dissection of the essential features of the origin of replication of the second Vibrio cholerae chromosome. mBio 2015;6: e00973–15. doi: 10.1128/mBio.00973-15. pmid:26220967
|
[22] | Banerjee S. & Chowdhury R. An orphan DNA (cytosine-5-)-methyltransferase in Vibrio cholerae. Microbiology (Reading, Engl) 2006;152: 1055–1062, doi: 10.1099/mic.0.28624–0.
|
[23] | Chao M. C. et al. High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res 2013;41: 9033–9048, doi: 10.1093/nar/gkt654. pmid:23901011
|
[24] | Cameron D. E., Urbach J. M. & Mekalanos J. J. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci USA 2008;105: 8736–8741, doi: 10.1073/pnas.0803281105. pmid:18574146
|
[25] | Kamp H. D., Patimalla-Dipali B., Lazinski D. W., Wallace-Gadsden F. & Camilli A. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog 2013;9: e1003800, doi: 10.1371/journal.ppat.1003800. pmid:24385900
|
[26] | Haberman A., Heywood J. & Meselson M. DNA modification methylase activity of Escherichia coli restriction endonucleases K and P. Proc Natl Acad Sci U S A 1972;69: 3138–3141. pmid:4564204 doi: 10.1073/pnas.69.11.3138
|
[27] | Dalia A. B., Lazinski D. W. & Camilli A. Characterization of undermethylated sites in Vibrio cholerae. J Bacteriol 2013;195: 2389–2399, doi: 10.1128/JB.02112-12. pmid:23504020
|
[28] | Papenfort K., Forstner K. U., Cong J. P., Sharma C. M. & Bassler B. L. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci U S A 2015;112: E766–775, doi: 10.1073/pnas.1500203112. pmid:25646441
|
[29] | Ades S. E. Regulation by destruction: design of the sigmaE envelope stress response. Curr Opin Microbiol 2008;11: 535–540, doi: 10.1016/j.mib.2008.10.004. pmid:18983936
|
[30] | De Las Penas A., Connolly L. & Gross C. A. The sigmaE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE. Mol Microbiol 1997;24: 373–385. pmid:9159523 doi: 10.1046/j.1365-2958.1997.3611718.x
|
[31] | Missiakas D., Mayer M. P., Lemaire M., Georgopoulos C. & Raina S. Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 1997;24: 355–371. pmid:9159522 doi: 10.1046/j.1365-2958.1997.3601713.x
|
[32] | Campbell E. A. et al. Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA. Mol Cell 2003;11: 1067–1078. pmid:12718891 doi: 10.3410/f.1009426.196610
|
[33] | Wilken C., Kitzing K., Kurzbauer R., Ehrmann M. & Clausen T. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 2004;117: 483–494. pmid:15137941 doi: 10.1016/s0092-8674(04)00454-4
|
[34] | Walsh N. P., Alba B. M., Bose B., Gross C. A. & Sauer R. T. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 2003;113: 61–71. pmid:12679035 doi: 10.1016/s0092-8674(03)00203-4
|
[35] | Chaba R. et al. Signal integration by DegS and RseB governs the σE-mediated envelope stress response in Escherichia coli. Proc Natl Acad Sci U S A 2011;108: 2106–2111, doi: 10.1073/pnas.1019277108. pmid:21245315
|
[36] | Lima S., Guo M. S., Chaba R., Gross C. A. & Sauer R. T. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 2013;340: 837–841, doi: 10.1126/science.1235358. pmid:23687042
|
[37] | Ades S. E., Connolly L. E., Alba B. M. & Gross C. A. The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 1999;13: 2449–2461. pmid:10500101 doi: 10.1101/gad.13.18.2449
|
[38] | Alba B. M., Leeds J. A., Onufryk C., Lu C. Z. & Gross C. A. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 2002;16: 2156–2168, doi: 10.1101/gad.1008902. pmid:12183369
|
[39] | Kanehara K., Ito K. & Akiyama Y. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev 2002;16: 2147–2155, doi: 10.1101/gad.1002302. pmid:12183368
|
[40] | Akiyama Y., Kanehara K. & Ito K. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 2004;23: 4434–4442, doi: 10.1038/sj.emboj.7600449. pmid:15496982
|
[41] | Dartigalongue C., Missiakas D. & Raina S. Characterization of the Escherichia coli sigma E regulon. J Biol Chem 2001;276: 20866–20875, doi: 10.1074/jbc.M100464200. pmid:11274153
|
[42] | Rezuchova B., Miticka H., Homerova D., Roberts M. & Kormanec J. New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Microbiol Lett 2003;225: 1–7. pmid:12900013 doi: 10.1016/s0378-1097(03)00480-4
|
[43] | Rhodius V. A., Suh W. C., Nonaka G., West J. & Gross C. A. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS biology 2006;4: e2, doi: 10.1371/journal.pbio.0040002. pmid:16336047
|
[44] | Guo M. S. et al. MicL, a new sigmaE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 2014;28: 1620–1634, doi: 10.1101/gad.243485.114. pmid:25030700
|
[45] | Thompson K. M., Rhodius V. A. & Gottesman S. SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 2007;189: 4243–4256, doi: 10.1128/JB.00020-07. pmid:17416652
|
[46] | De Las Penas A., Connolly L. & Gross C. A. SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 1997;179: 6862–6864. pmid:9352942
|
[47] | Davis B. M. & Waldor M. K. High-throughput sequencing reveals suppressors of Vibrio cholerae rpoE mutations: one fewer porin is enough. Nucleic Acids Res 2009;37: 5757–5767, doi: 10.1093/nar/gkp568. pmid:19620211
|
[48] | Dartigalongue C., Loferer H. & Raina S. EcfE, a new essential inner membrane protease: its role in the regulation of heat shock response in Escherichia coli. EMBO J 2001;20: 5908–5918, doi: 10.1093/emboj/20.21.5908. pmid:11689431
|
[49] | Alba B. M., Zhong H. J., Pelayo J. C. & Gross C. A. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol Microbiol 2001;40: 1323–1333. pmid:11442831 doi: 10.1046/j.1365-2958.2001.02475.x
|
[50] | Button J. E., Silhavy T. J. & Ruiz N. A suppressor of cell death caused by the loss of sigmaE downregulates extracytoplasmic stress responses and outer membrane vesicle production in Escherichia coli. J Bacteriol 2007;189: 1523–1530, doi: 10.1128/JB.01534-06. pmid:17172327
|
[51] | Daimon Y., Narita S. & Akiyama Y. Activation of Toxin-Antitoxin System Toxins Suppresses Lethality Caused by the Loss of sigmaE in Escherichia coli. J Bacteriol 2015;197: 2316–2324, doi: 10.1128/JB.00079-15. pmid:25917909
|
[52] | Douchin V., Bohn C. & Bouloc P. Down-regulation of porins by a small RNA bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli. J Biol Chem 2006;281: 12253–12259, doi: 10.1074/jbc.M600819200. pmid:16513633
|
[53] | Mathur J., Davis B. M. & Waldor M. K. Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol 2007;63: 848–858, doi: 10.1111/j.1365-2958.2006.05544.x. pmid:17181782
|
[54] | Provenzano D., Lauriano C. M. & Klose K. E. Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J Bacteriol 2001;183: 3652–3662, doi: 10.1128/JB.183.12.3652–3662.2001. pmid:11371530
|
[55] | Lee K. M. et al. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae. J Biol Chem 2012;287: 39742–39752, doi: 10.1074/jbc.M112.394932. pmid:23019319
|
[56] | Klein G., Lindner B., Brabetz W., Brade H. & Raina S. Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J Biol Chem 2009;284: 15369–15389, doi: 10.1074/jbc.M900490200. pmid:19346244
|
[57] | Fukuda A. et al. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals. J Biol Chem 2002;277: 43512–43518, doi: 10.1074/jbc.M206816200. pmid:12198129
|
[58] | Robichon C., Vidal-Ingigliardi D. & Pugsley A. P. Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem 2005;280: 974–983, doi: 10.1074/jbc.M411059200. pmid:15513925
|
[59] | Sklar J. G. et al. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 2007;104: 6400–6405, doi: 10.1073/pnas.0701579104. pmid:17404237
|
[60] | Kredich N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem 1971;246: 3474–3484. pmid:4931306
|
[61] | Tam C. & Missiakas D. Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli. Mol Microbiol 2005;55: 1403–1412, doi: 10.1111/j.1365-2958.2005.04497.x. pmid:15720549
|
[62] | Chiang S. L. & Rubin E. J. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 2002;296: 179–185, doi:S0378111902008569 [pii]. pmid:12383515 doi: 10.1016/s0378-1119(02)00856-9
|
[63] | Cameron D. E., Urbach J. M. & Mekalanos J. J. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci U S A 2008;105: 8736–8741, 0803281105 [pii]. doi: 10.1073/pnas.0803281105. pmid:18574146
|
[64] | Donnenberg M. S. & Kaper J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 1991;59: 4310–4317. pmid:1937792
|
[65] | Gibson D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009;6: 343–345, doi: 10.1038/nmeth.1318. pmid:19363495
|
[66] | Pritchard J. R. et al. ARTIST: High-Resolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. PLoS Genet 2014;10: e1004782, doi: 10.1371/journal.pgen.1004782. pmid:25375795
|
[67] | Miller V. L. & Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988;170: 2575–2583. pmid:2836362
|
[68] | Krueger F. & Andrews S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011;27: 1571–1572, doi: 10.1093/bioinformatics/btr167. pmid:21493656
|
[69] | Mandlik A. et al. RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 2011;10: 165–174, S1931-3128(11)00224-1 [pii]. doi: 10.1016/j.chom.2011.07.007. pmid:21843873
|
[70] | Robinson M. D., McCarthy D. J. & Smyth G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26: 139–140, doi: 10.1093/bioinformatics/btp616. pmid:19910308
|
[71] | Wang Q. et al. A genome wide screen reveals that Vibrio cholerae phosphoenolpyruvate phosphotransferase system (PTS) modulates virulence gene expression. Infect Immun 2015; doi: 10.1128/IAI.00411-15. pmid:26056384
|