Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein
Elongating DNA polymerases frequently encounter lesions or structures that impede progress and require repair before DNA replication can be completed. Therefore, directing repair factors to a blocked fork, without interfering with normal replication, is important for proper cell function, and it is a process that is not well understood. To study this process, we have employed the chain-terminating nucleoside analog, 3’ azidothymidine (AZT) and the E. coli genetic system, for which replication and repair factors have been well-defined. By using high-expression suppressor screens, we identified yoaA, encoding a putative helicase, and holC, encoding the Chi component of the replication clamp loader, as genes that promoted tolerance to AZT. YoaA is a putative Fe-S helicase in the XPD/RAD3 family for which orthologs can be found in most bacterial genomes; E. coli has a paralog to YoaA, DinG, which possesses 5’ to 3’ helicase activity and an Fe-S cluster essential to its activity. Mutants in yoaA are sensitive to AZT exposure; dinG mutations cause mild sensitivity to AZT and exacerbate the sensitivity of yoaA mutant strains. Suppression of AZT sensitivity by holC or yoaA was mutually codependent and we provide evidence here that YoaA and Chi physically interact. Interactions of Chi with single-strand DNA binding protein (SSB) and with Psi were required to aid AZT tolerance, as was the proofreading 3’ exonuclease, DnaQ. Our studies suggest that repair is coupled to blocked replication through these interactions. We hypothesize that SSB, through Chi, recruits the YoaA helicase to replication gaps and that unwinding of the nascent strand promotes repair and AZT excision. This recruitment prevents the toxicity of helicase activity and aids the handoff of repair with replication factors, ensuring timely repair and resumption of replication.
References
[1]
Goodman MF. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Ann Rev Biochem. 2002; 71: 17–50. pmid:12045089
[2]
Goldfless SJ, Morag AS, Belisle KA, Sutera VA, Lovett ST. DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell. 2006;21: 595–604. pmid:16507358 doi: 10.1016/j.molcel.2006.01.025
[3]
Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R. Recombination proteins and rescue of arrested replication forks. DNA Repair .2007;6: 967–980. pmid:17395553 doi: 10.1016/j.dnarep.2007.02.016
[4]
Persky NS, Lovett ST. Mechanisms of recombination: lessons from E. coli. Crit Rev Biochem Mol Biol. 2008;43: 347–370. doi: 10.1080/10409230802485358. pmid:19016098
[5]
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol. 2008;43: 289–318. doi: 10.1080/10409230802341296. pmid:18937104
[6]
Cooper DL, Lovett ST. Toxicity and tolerance mechanisms for azidothymidine, a replication gap-promoting agent, in Escherichia coli. DNA Repair. 2011;10: 260–270. doi: 10.1016/j.dnarep.2010.11.007. pmid:21145792
[7]
Richardson CC, Lehman IR, Kornberg A. A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. II. Characterization of the exonuclease activity. J Biol Chem. 1964;239: 251–258. pmid:14114851
[8]
Saka K, Tadenuma M, Nakade S, Tanaka N, Sugawara H, Nishikawa K, et al. A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res. 2005;12: 63–68. pmid:16106753 doi: 10.1093/dnares/12.1.63
[9]
Butland G, Peregrin-Alvarez J, Li J, Yang W, Yang X, Canadien V, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005;433: 531–537. pmid:15690043 doi: 10.1038/nature03239
[10]
Kurth I, O'Donnell M. Replisome dynamics during chromosome duplication. EcoSal Plus. 2009.
[11]
Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem. 2004;271: 439–449. pmid:14717711 doi: 10.1046/j.1432-1033.2003.03944.x
[12]
Xiao H, Dong Z, O'Donnell M. DNA polymerase III accessory proteins. IV. Characterization of chi and psi. J Biol Chem. 1993;268: 11779–11784. pmid:8505305
[13]
Kelman Z, Yuzhakov A, Andjelkovic J, O'Donnell M. Devoted to the lagging strand-the chi subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J. 1998;17: 2436–2449. pmid:9545254 doi: 10.1093/emboj/17.8.2436
[14]
Olson MW, Dallmann HG, McHenry CS. DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for delta delta' to a physiologically relevant range. J Biol Chem. 1995;270: 29570–29577. pmid:7494000 doi: 10.1074/jbc.270.49.29570
[15]
Glover B, McHenry C. The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem. 1998;273: 23476–23484. pmid:9722585 doi: 10.1074/jbc.273.36.23476
[16]
Yuan Q, McHenry CS. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template. J Biol Chem. 2009;284: 31672–31679. doi: 10.1074/jbc.M109.050740. pmid:19749191
[17]
Yuzhakov A, Kelman Z, O'Donnell M. Trading places on DNA—a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell. 1999;96: 153–163. pmid:9989506 doi: 10.1016/s0092-8674(00)80968-x
[18]
Anderson S, Williams C, O'Donnell M, Bloom L. A function for the psi subunit in loading the Escherichia coli DNA polymerase sliding clamp. J Biol Chem. 2007;282: 7035–7045. pmid:17210572 doi: 10.1074/jbc.m610136200
[19]
Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Mol Microbiol. 2003;50: 193–204. pmid:14507374 doi: 10.1046/j.1365-2958.2003.03658.x
[20]
Reyes-Lamothe R, Sherratt DJ, Leake MC. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science. 2010;328: 498–501. doi: 10.1126/science.1185757. pmid:20413500
[21]
Koonin EV. Escherichia coli dinG gene encodes a putative DNA helicase related to a group of eukaryotic helicases including Rad3 protein. Nucleic Acids Res. 1993;21: 1497. pmid:8385320 doi: 10.1093/nar/21.6.1497
[22]
Voloshin ON, Vanevski F, Khil PP, Camerini-Otero RD. Characterization of the DNA damage-inducible helicase DinG from Escherichia coli. J Biol Chem. 2003;278: 28284–28293. pmid:12748189 doi: 10.1074/jbc.m301188200
[23]
Voloshin ON, Camerini-Otero RD. The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem. 2007;282: 18437–18447. pmid:17416902 doi: 10.1074/jbc.m700376200
[24]
Ren B, Duan X, Ding H. Redox control of the DNA damage-inducible protein DinG helicase activity via its iron-sulfur cluster. J Biol Chem. 2009;284: 4829–4835. doi: 10.1074/jbc.M807943200. pmid:19074432
[25]
Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 2005;12: 291–299. pmid:16769691 doi: 10.1093/dnares/dsi012
[26]
Naue N, Fedorov R, Pich A, Manstein DJ, Curth U. Site-directed mutagenesis of the chi subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Res. 2011;39: 1398–1407. doi: 10.1093/nar/gkq988. pmid:20972214
[27]
White MF. Structure, function and evolution of the XPD family of iron-sulfur-containing 5'—>3' DNA helicases. Biochem Soc Trans. 2009;37: 547–551. doi: 10.1042/BST0370547. pmid:19442249
[28]
Fijalkowska I, Schaaper RM. Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci USA. 1996;93: 2856–2861. pmid:8610131 doi: 10.1073/pnas.93.7.2856
[29]
Jonczyk P, Nowicka A, Fija?kowska IJ, Schaaper RM, Cie?la Z. In vivo protein interactions within the Escherichia coli DNA polymerase III core. J Bacteriol. 1998;180: 1563–1566. pmid:9515927
[30]
Lewis LK, Jenkins ME, Mount DW. Isolation of DNA damage-inducible promoters in Escherichia coli: regulation of polB (dinA), dinG, and dinH by LexA repressor. J Bacteriol. 1992;174: 3377–3385. pmid:1577702
[31]
Lewis LK, Mount DW. Interaction of LexA repressor with the asymmetric dinG operator and complete nucleotide sequence of the gene. J Bacteriol. 1992;174: 5110–5116. pmid:1629168
[32]
Thakur RS, Desingu A, Basavaraju S, Subramanya S, Rao DN, Nagaraju G. Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach. J Biol Chem. 2014;289: 25112–25136. doi: 10.1074/jbc.M114.563569. pmid:25059658
[33]
Boubakri H, de Septenville AL, Viguera E, Michel B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 2010;29: 145–157. doi: 10.1038/emboj.2009.308. pmid:19851282
[34]
Burdett V, Baitinger C, Viswanathan M, Lovett ST, Modrich P. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc Natl Acad Sci USA. 2001;98: 6765–6770. pmid:11381137 doi: 10.1073/pnas.121183298
[35]
Hersh MN, Morales LD, Ross KJ, Rosenberg SM. Single-strand-specific exonucleases prevent frameshift mutagenesis by suppressing SOS induction and the action of DinB/DNA polymerase IV in growing cells. J Bacteriol. 2006;188: 2336–2342. pmid:16547019 doi: 10.1128/jb.188.7.2336-2342.2006
[36]
Dutra BE, Sutera VA Jr., Lovett ST. RecA-independent recombination is efficient but limited by exonucleases. Proc Natl Acad Sci USA. 2007;104: 216–221. pmid:17182742 doi: 10.1073/pnas.0608293104
[37]
Eriksson S, Xu B, Clayton DA. Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. J Biol Chem. 1995;270: 18929–18934. pmid:7642550 doi: 10.1074/jbc.270.32.18929
[38]
Johnson AA, Ray AS, Hanes J, Suo Z, Colacino JM, Anderson KS, Johnson KA. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J Biol Chem. 2001;276:40847–40857. pmid:11526116 doi: 10.1074/jbc.m106743200
[39]
Miller J. A short course in bacterial genetics. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1992.
[40]
Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988;16: 6127–6145. pmid:3041370 doi: 10.1093/nar/16.13.6127
[41]
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006 0008. pmid:16738554 doi: 10.1038/msb4100050
[42]
Lovett ST, Kolodner RD. Nucleotide sequence of the Escherichia coli recJ chromosomal region and construction of recJ-overexpression plasmids. J Bacteriol. 1991;173: 353–364. pmid:1987126