Productive HIV infection of CD4+ T cells leads to a caspase-independent cell death pathway associated with lysosomal membrane permeabilization (LMP) and cathepsin release, resulting in mitochondrial outer membrane permeabilization (MOMP). Herein, we demonstrate that HIV infection induces damage-regulated autophagy modulator (DRAM) expression in a p53-dependent manner. Knocking down the expression of DRAM and p53 genes with specific siRNAs inhibited autophagy and LMP. However, inhibition of Atg5 and Beclin genes that prevents autophagy had a minor effect on LMP and cell death. The knock down of DRAM gene inhibited cytochrome C release, MOMP and cell death. However, knocking down DRAM, we increased viral infection and production. Our study shows for the first time the involvement of DRAM in host-pathogen interactions, which may represent a mechanism of defense via the elimination of infected cells.
References
[1]
Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23: 2746–2756. doi: 10.1038/sj.onc.1207513
[2]
Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23: 2881–2890. doi: 10.1038/sj.onc.1207512
[3]
Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, et al. (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276: 3149–3157. doi: 10.1074/jbc.m008944200
[4]
Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, et al. (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278: 31401–31411. doi: 10.1074/jbc.m301911200
[5]
Moutouh L, Estaquier J, Richman DD, Corbeil J (1998) Molecular and cellular analysis of human immunodeficiency virus-induced apoptosis in lymphoblastoid T-cell-line-expressing wild-type and mutated CD4 receptors. J Virol 72: 8061–8072.
[6]
Gandhi RT, Chen BK, Straus SE, Dale JK, Lenardo MJ, et al. (1998) HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. J Exp Med 187: 1113–1122. doi: 10.1084/jem.187.7.1113
[7]
Petit F, Arnoult D, Lelievre JD, Moutouh-de Parseval L, Hance AJ, et al. (2002) Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. J Biol Chem 277: 1477–1487. doi: 10.1074/jbc.m102671200
[8]
Bolton DL, Hahn BI, Park EA, Lehnhoff LL, Hornung F, et al. (2002) Death of CD4(+) T-cell lines caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis. J Virol 76: 5094–5107. doi: 10.1128/jvi.76.10.5094-5107.2002
[9]
Lenardo MJ, Angleman SB, Bounkeua V, Dimas J, Duvall MG, et al. (2002) Cytopathic killing of peripheral blood CD4(+) T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J Virol 76: 5082–5093. doi: 10.1128/jvi.76.10.5082-5093.2002
[10]
Laforge M, Petit F, Estaquier J, Senik A (2007) Commitment to apoptosis in CD4(+) T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef. J Virol 81: 11426–11440. doi: 10.1128/jvi.00597-07
[11]
Yuan XM, Li W, Dalen H, Lotem J, Kama R, et al. (2002) Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A 99: 6286–6291. doi: 10.1073/pnas.092135599
[12]
Li N, Zheng Y, Chen W, Wang C, Liu X, et al. (2007) Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis. Cancer Res 67: 11176–11185. doi: 10.1158/0008-5472.can-07-2333
[13]
O'Shea CC, Fried M (2005) Modulation of the ARF-p53 pathway by the small DNA tumor viruses. Cell Cycle 4: 449–452. doi: 10.4161/cc.4.3.1555
[14]
Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, et al. (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424: 516–523. doi: 10.1038/nature01850
[15]
Corbeil J, Sheeter D, Genini D, Rought S, Leoni L, et al. (2001) Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 11: 1198–1204. doi: 10.1101/gr.gr-1802r
[16]
Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306: 990–995. doi: 10.1126/science.1099993
[17]
Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120: 159–162. doi: 10.1016/s0092-8674(05)00043-7
[18]
Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7: 767–777. doi: 10.1038/nri2161
[19]
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, et al. (2004) The role of autophagy during the early neonatal starvation period. Nature 432: 1032–1036. doi: 10.1038/nature03029
[20]
Klionsky DJ, Emir SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290: 1717–1721. doi: 10.1126/science.290.5497.1717
[21]
Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, et al. (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228. doi: 10.1038/ncb1192
[22]
Scarlatti F, Granata R, Meijer AJ, Codogno P (2009) Does autophagy have a license to kill mammalian cells? Cell Death Differ 16: 12–20. doi: 10.1038/cdd.2008.101
[23]
Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319: 921–926. doi: 10.1126/science.1152725
[24]
Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, et al. (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116: 2161–2172. doi: 10.1172/jci26185
[25]
Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, et al. (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186: 255–268. doi: 10.1083/jcb.200903070
[26]
Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, et al. (2010) Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32: 654–669. doi: 10.1016/j.immuni.2010.04.011
[27]
Van Grol J, Subauste C, Andrade RM, Fujinaga K, Nelson J, et al. (2010) HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS One 5: e11733. doi: 10.1371/journal.pone.0011733
[28]
Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. Aids 22: 695–699. doi: 10.1097/qad.0b013e3282f4a836
[29]
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, et al. (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126: 121–134. doi: 10.1016/j.cell.2006.05.034
[30]
Imbeault M, Lodge R, Ouellet M, Tremblay MJ (2009) Efficient magnetic bead-based separation of HIV-1-infected cells using an improved reporter virus system reveals that p53 up-regulation occurs exclusively in the virus-expressing cell population. Virology 393: 160–167. doi: 10.1016/j.virol.2009.07.009
[31]
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, et al. (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151–175.
[32]
Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, et al. (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450: 1253–1257. doi: 10.1038/nature06421
[33]
Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, et al. (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. Embo J 26: 313–324. doi: 10.1038/sj.emboj.7601511
[34]
Fehrenbacher N, Bastholm L, Kirkegaard-Sorensen T, Rafn B, Bottzauw T, et al. (2008) Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res 68: 6623–6633. doi: 10.1158/0008-5472.can-08-0463
[35]
Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7: 279–296. doi: 10.4161/auto.7.3.14487
[36]
Shvets E, Elazar Z (2008) Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1. Autophagy 4: 1054–1056.
[37]
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, et al. (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149–1163. doi: 10.1016/j.cell.2007.10.035
[38]
Roshal M, Kim B, Zhu Y, Nghiem P, Planelles V (2003) Activation of the ATR-mediated DNA damage response by the HIV-1 viral protein R. J Biol Chem 278: 25879–25886. doi: 10.1074/jbc.m303948200
[39]
Andersen JL, DeHart JL, Zimmerman ES, Ardon O, Kim B, et al. (2006) HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2: e127. doi: 10.1371/journal.ppat.0020127
[40]
Sanfridson A, Hester S, Doyle C (1997) Nef proteins encoded by human and simian immunodeficiency viruses induce the accumulation of endosomes and lysosomes in human T cells. Proc Natl Acad Sci U S A 94: 873–878. doi: 10.1073/pnas.94.3.873
[41]
Allison AC, Mallucci L (1965) Histochemical Studies of Lysosomes and Lysosomal Enzymes in Virus-Infected Cell Cultures. J Exp Med 121: 463–476. doi: 10.1084/jem.121.3.463
[42]
Allison AC, Black PH (1967) Lysosomal changes in lytic and nonlytic infections with the simian vacuolating virus (SV40). J Natl Cancer Inst 39: 775–780, 782–777.
[43]
Thacore H, Wolff DA (1968) Activation of isolated lysosomes by poliovirus-infected cell extracts. Nature 218: 1063–1064. doi: 10.1038/2181063a0
[44]
Fine DL, Lake RS, Ludwig EH (1970) Host-cell lysosomal response to two strains of herpes simplex virus. J Virol 5: 226–229.
[45]
Genini D, Sheeter D, Rought S, Zaunders JJ, Susin SA, et al. (2001) HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism. Faseb J 15: 5–6. doi: 10.1096/fj.00-0336fje
[46]
Imbeault M, Ouellet M, Tremblay MJ (2009) Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 6: 5. doi: 10.1186/1742-4690-6-5
[47]
Dabrowska A, Kim N, Aldovini A (2008) Tat-induced FOXO3a is a key mediator of apoptosis in HIV-1-infected human CD4+ T lymphocytes. J Immunol 181: 8460–8477. doi: 10.4049/jimmunol.181.12.8460
[48]
Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, et al. (2001) Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 194: 1097–1110. doi: 10.1084/jem.194.8.1097
[49]
Duus KM, Miller ED, Smith JA, Kovalev GI, Su L (2001) Separation of human immunodeficiency virus type 1 replication from nef-mediated pathogenesis in the human thymus. J Virol 75: 3916–3924. doi: 10.1128/jvi.75.8.3916-3924.2001
[50]
Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, et al. (2002) Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol 76: 2692–2702. doi: 10.1128/jvi.76.6.2692-2702.2002
[51]
Olszewski A, Sato K, Aron ZD, Cohen F, Harris A, et al. (2004) Guanidine alkaloid analogs as inhibitors of HIV-1 Nef interactions with p53, actin, and p56lck. Proc Natl Acad Sci U S A 101: 14079–14084. doi: 10.1073/pnas.0406040101
[52]
Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, et al. (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662. doi: 10.1016/0092-8674(91)90097-i
[53]
Spina CA, Kwoh TJ, Chowers MY, Guatelli JC, Richman DD (1994) The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J Exp Med 179: 115–123. doi: 10.1084/jem.179.1.115
[54]
Ho Tsong Fang R, Khatissian E, Monceaux V, Cumont MC, Beq S, et al. (2005) Disease progression in macaques with low SIV replication levels: on the relevance of TREC counts. Aids 19: 663–673. doi: 10.1097/01.aids.0000166089.93574.5a
[55]
Cumont MC, Monceaux V, Viollet L, Lay S, Parker R, et al. (2007) TGF-beta in intestinal lymphoid organs contributes to the death of armed effector CD8 T cells and is associated with the absence of virus containment in rhesus macaques infected with the simian immunodeficiency virus. Cell Death Differ 14: 1747–1758. doi: 10.1038/sj.cdd.4402192
[56]
Viollet L, Monceaux V, Petit F, Ho Tsong Fang R, Cumont MC, et al. (2006) Death of CD4+ T cells from lymph nodes during primary SIVmac251 infection predicts the rate of AIDS progression. J Immunol 177: 6685–6694. doi: 10.4049/jimmunol.177.10.6685
[57]
Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, et al. (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465: 942–946. doi: 10.1038/nature09076
[58]
Orvedahl A, MacPherson S, Sumpter R Jr, Talloczy Z, Zou Z, et al. (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7: 115–127. doi: 10.1016/j.chom.2010.01.007
[59]
Monceaux V, Estaquier J, Fevrier M, Cumont MC, Riviere Y, et al. (2003) Extensive apoptosis in lymphoid organs during primary SIV infection predicts rapid progression towards AIDS. Aids 17: 1585–1596. doi: 10.1097/00002030-200307250-00002
[60]
Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, et al. (2005) Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434: 1093–1097. doi: 10.1038/nature03501
[61]
Li Q, Duan L, Estes JD, Ma ZM, Rourke T, et al. (2005) Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434: 1148–1152. doi: 10.1038/nature03513
[62]
Hurtrel B, Petit F, Arnoult D, Muller-Trutwin M, Silvestri G, et al. (2005) Apoptosis in SIV infection. Cell Death Differ 12 Suppl 1: 979–990. doi: 10.1038/sj.cdd.4401600
[63]
Lelievre JD, Petit F, Perrin L, Mammano F, Arnoult D, et al. (2004) The density of coreceptors at the surface of CD4+ T cells contributes to the extent of human immunodeficiency virus type 1 viral replication-mediated T cell death. AIDS Res Hum Retroviruses 20: 1230–1243. doi: 10.1089/0889222042545045
[64]
Estaquier J, Idziorek T, de Bels F, Barre-Sinoussi F, Hurtrel B, et al. (1994) Programmed cell death and AIDS: significance of T-cell apoptosis in pathogenic and nonpathogenic primate lentiviral infections. Proc Natl Acad Sci U S A 91: 9431–9435. doi: 10.1073/pnas.91.20.9431
[65]
Estaquier J, Idziorek T, Zou W, Emilie D, Farber CM, et al. (1995) T helper type 1/T helper type 2 cytokines and T cell death: preventive effect of interleukin 12 on activation-induced and CD95 (FAS/APO-1)-mediated apoptosis of CD4+ T cells from human immunodeficiency virus-infected persons. J Exp Med 182: 1759–1767. doi: 10.1084/jem.182.6.1759