全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Nucleotide Sugar Transporter Involved in Glycosylation of the Toxoplasma Tissue Cyst Wall Is Required for Efficient Persistence of Bradyzoites

DOI: 10.1371/journal.ppat.1003331

Full-Text   Cite this paper   Add to My Lib

Abstract:

Toxoplasma gondii is an intracellular parasite that transitions from acute infection to a chronic infective state in its intermediate host via encystation, which enables the parasite to evade immune detection and clearance. It is widely accepted that the tissue cyst perimeter is highly and specifically decorated with glycan modifications; however, the role of these modifications in the establishment and persistence of chronic infection has not been investigated. Here we identify and biochemically and biologically characterize a Toxoplasma nucleotide-sugar transporter (TgNST1) that is required for cyst wall glycosylation. Toxoplasma strains deleted for the TgNST1 gene (Δnst1) form cyst-like structures in vitro but no longer interact with lectins, suggesting that Δnst1 strains are deficient in the transport and use of sugars for the biosynthesis of cyst-wall structures. In vivo infection experiments demonstrate that the lack of TgNST1 activity does not detectably impact the acute (tachyzoite) stages of an infection or tropism of the parasite for the brain but that Δnst1 parasites are severely defective in persistence during the chronic stages of the infection. These results demonstrate for the first time the critical role of parasite glycoconjugates in the persistence of Toxoplasma tissue cysts.

References

[1]  Dubey JP (1998) Advances in the life cycle of Toxoplasma gondii. Int J Parasitol 28: 1019–1024. doi: 10.1016/s0020-7519(98)00023-x
[2]  Boothroyd JC (2009) Expansion of host range as a driving force in the evolution of Toxoplasma. Mem Inst Oswaldo Cruz 104: 179–184. doi: 10.1590/s0074-02762009000200009
[3]  Luft BJ, Brooks RG, Conley FK, McCabe RE, Remington JS (1984) Toxoplasmic encephalitis in patients with acquired immune deficiency syndrome. JAMA 252: 913–917. doi: 10.1001/jama.252.7.913
[4]  Luft BJ, Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis 15: 211–222. doi: 10.1093/clinids/15.2.211
[5]  Ferguson DJ (2004) Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. Int J Parasitol 34: 347–360. doi: 10.1016/j.ijpara.2003.11.024
[6]  Ferguson DJ, Hutchison WM, Pettersen E (1989) Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study. Parasitol Res 75: 599–603. doi: 10.1007/bf00930955
[7]  Lemgruber L, Lupetti P, Martins-Duarte ES, De Souza W, Vommaro RC (2011) The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form. Cell Microbiol 13: 1920–1932. doi: 10.1111/j.1462-5822.2011.01681.x
[8]  Ferguson DJ, Hutchison WM (1987) An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res 73: 483–491. doi: 10.1007/bf00535321
[9]  Boothroyd JC, Black M, Bonnefoy S, Hehl A, Knoll LJ, et al. (1997) Genetic and biochemical analysis of development in Toxoplasma gondii. Philos Trans R Soc Lond B Biol Sci 352: 1347–1354. doi: 10.1098/rstb.1997.0119
[10]  Zhang YW, Halonen SK, Ma YF, Wittner M, Weiss LM (2001) Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein. Infect Immun 69: 501–507. doi: 10.1128/iai.69.1.501-507.2001
[11]  Gross U, Bormuth H, Gaissmaier C, Dittrich C, Krenn V, et al. (1995) Monoclonal rat antibodies directed against Toxoplasma gondii suitable for studying tachyzoite-bradyzoite interconversion in vivo. Clin Diagn Lab Immunol 2: 542–548.
[12]  Craver MP, Rooney PJ, Knoll LJ (2010) Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation. Mol Biochem Parasitol 169: 120–123. doi: 10.1016/j.molbiopara.2009.10.006
[13]  Caffaro CE, Hirschberg CB (2006) Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 39: 805–812. doi: 10.1021/ar0400239
[14]  Caffaro CE, Hirschberg CB, Berninsone PM (2006) Independent and simultaneous translocation of two substrates by a nucleotide sugar transporter. Proc Natl Acad Sci U S A 103: 16176–16181. doi: 10.1073/pnas.0608159103
[15]  Tobin CM, Knoll LJ (2012) A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner. Infect Immun 80: 55–61. doi: 10.1128/iai.05543-11
[16]  Zinecker CF, Striepen B, Tomavo S, Dubremetz JF, Schwarz RT (1998) The dense granule antigen, GRA2 of Toxoplasma gondii is a glycoprotein containing O-linked oligosaccharides. Mol Biochem Parasitol 97: 241–246. doi: 10.1016/s0166-6851(98)00136-4
[17]  Xu YX, Liu L, Caffaro CE, Hirschberg CB (2010) Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis. J Biol Chem 285: 24600–24608. doi: 10.1074/jbc.m110.134544
[18]  Adjogble KD, Mercier C, Dubremetz JF, Hucke C, Mackenzie CR, et al. (2004) GRA9, a new Toxoplasma gondii dense granule protein associated with the intravacuolar network of tubular membranes. Int J Parasitol 34: 1255–1264. doi: 10.1016/j.ijpara.2004.07.011
[19]  Buchholz KR, Fritz HM, Chen X, Durbin-Johnson B, Rocke DM, et al. (2011) Identification of tissue cyst wall components by transcriptome analysis of in vivo and in vitro Toxoplasma gondii bradyzoites. Eukaryot Cell 10: 1637–1647. doi: 10.1128/ec.05182-11
[20]  Saeij JP, Arrizabalaga G, Boothroyd JC (2008) A cluster of four surface antigen genes specifically expressed in bradyzoites, SAG2CDXY, plays an important role in Toxoplasma gondii persistence. Infect Immun 76: 2402–2410. doi: 10.1128/iai.01494-07
[21]  Debierre-Grockiego F, Azzouz N, Schmidt J, Dubremetz JF, Geyer H, et al. (2003) Roles of glycosylphosphatidylinositols of Toxoplasma gondii. Induction of tumor necrosis factor-alpha production in macrophages. J Biol Chem 278: 32987–32993. doi: 10.1074/jbc.m304791200
[22]  Debierre-Grockiego F, Schwarz RT (2010) Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 20: 801–811. doi: 10.1093/glycob/cwq038
[23]  Kimmel J, Smith TK, Azzouz N, Gerold P, Seeber F, et al. (2006) Membrane topology and transient acylation of Toxoplasma gondii glycosylphosphatidylinositols. Eukaryot Cell 5: 1420–1429. doi: 10.1128/ec.00078-06
[24]  Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, et al. (2008) Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii–host cell interactions. Mol Cell Proteomics 7: 891–910. doi: 10.1074/mcp.m700391-mcp200
[25]  Garenaux E, Shams-Eldin H, Chirat F, Bieker U, Schmidt J, et al. (2008) The dual origin of Toxoplasma gondii N-glycans. Biochemistry 47: 12270–12276. doi: 10.1021/bi801090a
[26]  Azzouz N, Rauscher B, Gerold P, Cesbron-Delauw MF, Dubremetz JF, et al. (2002) Evidence for de novo sphingolipid biosynthesis in Toxoplasma gondii. Int J Parasitol 32: 677–684. doi: 10.1016/s0020-7519(02)00009-7
[27]  Abeijon C, Orlean P, Robbins PW, Hirschberg CB (1989) Topography of glycosylation in yeast: characterization of GDPmannose transport and lumenal guanosine diphosphatase activities in Golgi-like vesicles. Proc Natl Acad Sci U S A 86: 6935–6939. doi: 10.1073/pnas.86.18.6935
[28]  Perez M, Hirschberg CB (1987) Transport of sugar nucleotides into the lumen of vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. Methods Enzymol 138: 709–715. doi: 10.1016/0076-6879(87)38061-9
[29]  Yanagisawa K, Resnick D, Abeijon C, Robbins PW, Hirschberg CB (1990) A guanosine diphosphatase enriched in Golgi vesicles of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem 265: 19351–19355.
[30]  Lodoen MB, Gerke C, Boothroyd JC (2010) A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection. Cell Microbiol 12: 55–66. doi: 10.1111/j.1462-5822.2009.01378.x
[31]  Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7: 649–659. doi: 10.1046/j.1365-313x.1995.7040649.x
[32]  Soldati D, Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260: 349–352. doi: 10.1126/science.8469986
[33]  Koshy AA, Dietrich HK, Christian DA, Melehani JH, Shastri AJ, et al. (2012) Toxoplasma Co-opts Host Cells It Does Not Invade. PLoS Pathog 8: e1002825. doi: 10.1371/journal.ppat.1002825
[34]  van de Ven E, Melchers W, Galama J, Camps W, Meuwissen J (1991) Identification of Toxoplasma gondii infections by BI gene amplification. J Clin Microbiol 29: 2120–2124. doi: 10.1007/978-3-642-78559-7_21

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133