[1] | McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, et al. (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353: 2433–2441. doi: 10.1056/nejmoa051590
|
[2] | Redelings MD, Sorvillo F, Mascola L (2007) Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerging Infections Diseases 13: 1417–1419. doi: 10.3201/eid1309.061116
|
[3] | Wilson KH, Perini F (1988) Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun 56: 2610–2614.
|
[4] | Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, et al. (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467: 711–713. doi: 10.1038/nature09397
|
[5] | Lyras D, O'Connor JR, Howarth PM, Sambol SP, Carter GP, et al. (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458: 1176–9 doi:10.1038/nature07822.
|
[6] | Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, et al. (2009) Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 191: 5377–5386. doi: 10.1128/jb.00597-09
|
[7] | Pruitt RN, Lacy DB (2012) Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol 2: 28. doi: 10.3389/fcimb.2012.00028
|
[8] | Carter GP, Rood JI, Lyras D (2012) The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 20: 21–29. doi: 10.1016/j.tim.2011.11.003
|
[9] | Stragier P, Losick R (1996) Molecular Genetics of Sporulation in Bacillus subtilis. Annu Rev Genet 30: 297–341. doi: 10.1146/annurev.genet.30.1.297
|
[10] | Setlow P (2003) Spore germination. Curr Opin Microbiol 6: 550–556. doi: 10.1016/j.mib.2003.10.001
|
[11] | Paredes-Sabja D, Udompijitkul P, Sarker MR (2009) Inorganic phosphate and sodium ions are cogerminants for spores of Clostridium perfringens type A food poisoning-related isolates. Appl Environ Microbiol 75: 6299–6305. doi: 10.1128/aem.00822-09
|
[12] | Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38: 779–786. doi: 10.1038/ng1830
|
[13] | Wilson KH (1983) Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18: 1017–1019.
|
[14] | Wilson KH, Kennedy MJ, Fekety FR (1982) Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 15: 443–446.
|
[15] | Railbaud P, Ducluzeau R, Muller MC, Sacquet E (1974) [Sodium taurocholate, a germination factor for anaerobic bacterial spores “in vitro” and “in vivo” (author's transl)]. Ann Microbiol (Paris) 125B: 381–391.
|
[16] | Ridlon JM, Kang D, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47: 241–259. doi: 10.1194/jlr.r500013-jlr200
|
[17] | Sorg JA, Sonenshein AL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190: 2505–2512. doi: 10.1128/jb.01765-07
|
[18] | Sorg JA, Sonenshein AL (2009) Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191: 1115–1117. doi: 10.1128/jb.01260-08
|
[19] | Sorg JA, Sonenshein AL (2010) Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192: 4983–4990. doi: 10.1128/jb.00610-10
|
[20] | Moir A, Lafferty E, Smith DA (1979) Genetic analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. J Gen Microbiol 124: 165–180. doi: 10.1099/00221287-111-1-165
|
[21] | Kamiya S, Yamakawa K, Ogura H, Nakamura S (1989) Recovery of spores of Clostridium difficile altered by heat or alkali. J Med Microbiol 28: 217–221. doi: 10.1099/00222615-28-3-217
|
[22] | Masayama A, Hamasaki K, Urakami K, Shimamoto S, Kato S, et al. (2006) Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells. Genes Genet Syst 81: 227–234. doi: 10.1266/ggs.81.227
|
[23] | Paredes-Sabja D, Setlow P, Sarker MR (2009) The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology 155: 3464–3472. doi: 10.1099/mic.0.030965-0
|
[24] | Shimamoto S, Moriyama R, Sugimoto K, Miyata S, Makino S (2001) Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J Bacteriol 183: 3742–3751. doi: 10.1128/jb.183.12.3742-3751.2001
|
[25] | Zhong J, Karberg M, Lambowitz AM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Research 31: 1656–1664. doi: 10.1093/nar/gkg248
|
[26] | Heap JT, Pennington OJ, Cartmant ST, Carter GP, Minton NP (2007) The ClosTron: A universal gene knock-out system for the genus Clostridium. J Microbiol Methods 79: 452–464. doi: 10.1016/j.mimet.2007.05.021
|
[27] | Burns DA, Heap JT, Minton NP (2010) SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 192: 657–664. doi: 10.1128/jb.01209-09
|
[28] | Carter GP, Douce GR, Govind R, Howarth PM, Mackin KE, et al. (2011) The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile. PLoS Pathog 7: e1002317. doi: 10.1371/journal.ppat.1002317
|
[29] | Heeg D, Burns DA, Cartman ST, Minton NP (2012) Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS One 7: e32381. doi: 10.1371/journal.pone.0032381
|
[30] | Giel JL, Sorg JA, Sonenshein AL, Zhu J (2010) Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS One 5: e8740. doi: 10.1371/journal.pone.0008740
|
[31] | Chang TW, Bartlett JG, Gorbach SL, Onderdonk AB (1978) Clindamycin-induced enterocolitis in hamsters as a model of pseudomembranous colitis in patients. Infect Immun 20: 526–529.
|
[32] | Hudson KD, Corfe BM, Kemp EH, Feavers IM, Coote PJ, et al. (2001) Localization of GerAA and GerAC germination proteins in the Bacillus subtilis spore. Journal of Bacteriology 183: 4317–4322. doi: 10.1128/jb.183.14.4317-4322.2001
|
[33] | Paidhungat M, Ragkousi K, Setlow P (2001) Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183: 4886–4893. doi: 10.1128/jb.183.16.4886-4893.2001
|
[34] | Adams CM, Eckenroth BE, Putnam EE, Doublie S, Shen A (2013) Structural and Functional Analysis of the CspB Protease Required for Clostridium Spore Germination. PLoS Pathog 9: e1003165. doi: 10.1371/journal.ppat.1003165
|
[35] | Paredes-Sabja D, Sarker MR (2011) Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells. Anaerobe 17: 78–84. doi: 10.1128/jb.00158-09
|
[36] | Howerton A, Patra M, Abel-Santos E (2013) A new strategy for the prevention of Clostridium difficile infections. J Infect Dis epub ahead of print. doi: 10.1093/infdis/jit068
|
[37] | Ramirez N, Liggins M, Abel-Santos E (2010) Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores. J Bacteriol 192: 4215–4222. doi: 10.1128/jb.00488-10
|
[38] | Howerton A, Ramirez N, Abel-Santos E (2010) Mapping interactions between germinants and C. difficile spores. J Bacteriol 193: 274–282. doi: 10.1128/jb.00980-10
|
[39] | Allen CA, Babakhani F, Sears P, Nguyen L, Sorg JA (2013) Both Fidaxomicin and Vancomycin Inhibit Outgrowth of Clostridium difficile Spores. Antimicrob Agents Chemother 57: 664–667. doi: 10.1128/aac.01611-12
|
[40] | Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580. doi: 10.1016/s0022-2836(83)80284-8
|
[41] | Bouillaut L, McBride SM, Sorg JA (2011) Genetic manipulation of Clostridium difficile. Curr Protoc Microbiol Chapter 9: Unit 9A 2. doi: 10.1002/9780471729259.mc09a02s20
|
[42] | Wren BW, Tabaqchali S (1987) Restriction endonuclease DNA analysis of Clostridium difficile. J Clin Microbiol 25: 2402–2404.
|
[43] | Bouillaut L, Self WT, Sonenshein AL (2012) Proline-Dependent Regulation of Clostridium difficile Stickland Metabolism. J Bacteriol epub ahead of print. doi: 10.1128/jb.01492-12
|
[44] | Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78: 79–85. doi: 10.1016/j.mimet.2009.05.004
|
[45] | Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, et al. (2011) Surface layers of Clostridium difficile endospores. J Bacteriol 193: 6461–6470. doi: 10.1128/jb.05182-11
|
[46] | Cabrera-Martinez R-M, Tovar-Rojo F, Vepachedu VR, Setlow P (2003) Effects of overexpression of nutrient receptors on germination of spores of Bacillus subtilis. J Bacteriol 185: 2457–2464. doi: 10.1128/jb.185.8.2457-2464.2003
|
[47] | Sambol SP, Tang JK, Merrigan MM, Johnson S, Gerding DN (2001) Infection of hamsters with epidemiologically important strains of Clostridium difficile. J Infect Dis 183: 1760–1766. doi: 10.1086/320736
|
[48] | Haraldsen JD, Sonenshein AL (2003) Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Molecular Microbiology 48: 811–821. doi: 10.1046/j.1365-2958.2003.03471.x
|