Gain-of-Sensitivity Mutations in a Trim5-Resistant Primary Isolate of Pathogenic SIV Identify Two Independent Conserved Determinants of Trim5α Specificity
Retroviral capsid recognition by Trim5 blocks productive infection. Rhesus macaques harbor three functionally distinct Trim5 alleles: Trim5αQ, Trim5αTFP and Trim5CypA. Despite the high degree of amino acid identity between Trim5αQ and Trim5αTFP alleles, the Q/TFP polymorphism results in the differential restriction of some primate lentiviruses, suggesting these alleles differ in how they engage these capsids. Simian immunodeficiency virus of rhesus macaques (SIVmac) evolved to resist all three alleles. Thus, SIVmac provides a unique opportunity to study a virus in the context of the Trim5 repertoire that drove its evolution in vivo. We exploited the evolved rhesus Trim5α resistance of this capsid to identify gain-of-sensitivity mutations that distinguish targets between the Trim5αQ and Trim5αTFP alleles. While both alleles recognize the capsid surface, Trim5αQ and Trim5αTFP alleles differed in their ability to restrict a panel of capsid chimeras and single amino acid substitutions. When mapped onto the structure of the SIVmac239 capsid N-terminal domain, single amino acid substitutions affecting both alleles mapped to the β-hairpin. Given that none of the substitutions affected Trim5αQ alone, and the fact that the β-hairpin is conserved among retroviral capsids, we propose that the β-hairpin is a molecular pattern widely exploited by Trim5α proteins. Mutations specifically affecting rhesus Trim5αTFP (without affecting Trim5αQ) surround a site of conservation unique to primate lentiviruses, overlapping the CPSF6 binding site. We believe targeting this site is an evolutionary innovation driven specifically by the emergence of primate lentiviruses in Africa during the last 12 million years. This modularity in targeting may be a general feature of Trim5 evolution, permitting different regions of the PRYSPRY domain to evolve independent interactions with capsid.
References
[1]
Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, et al. (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427: 848–853. doi: 10.1038/nature02343
[2]
Newman RM, Johnson WE (2007) A brief history of TRIM5alpha. AIDS Rev 9: 114–125.
[3]
Schaller T, Hue S, Towers GJ (2007) An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins. J Virol 81: 11713–11721. doi: 10.1128/jvi.01468-07
[4]
Ylinen LM, Keckesova Z, Webb BL, Gifford RJ, Smith TP, et al. (2006) Isolation of an active Lv1 gene from cattle indicates that tripartite motif protein-mediated innate immunity to retroviral infection is widespread among mammals. J Virol 80: 7332–7338. doi: 10.1128/jvi.00516-06
[5]
Rahm N, Yap M, Snoeck J, Zoete V, Munoz M, et al. (2011) Unique spectrum of activity of prosimian TRIM5alpha against exogenous and endogenous retroviruses. J Virol 85: 4173–4183. doi: 10.1128/jvi.00075-11
[6]
Diehl WE, Stansell E, Kaiser SM, Emerman M, Hunter E (2008) Identification of postentry restrictions to Mason-Pfizer monkey virus infection in New World monkey cells. J Virol 82: 11140–11151. doi: 10.1128/jvi.00269-08
[7]
Pacheco B, Finzi A, McGee-Estrada K, Sodroski J (2010) Species-specific inhibition of foamy viruses from South American monkeys by New World Monkey TRIM5{alpha} proteins. J Virol 84: 4095–4099. doi: 10.1128/jvi.02631-09
[8]
Borden KL, Lally JM, Martin SR, O'Reilly NJ, Etkin LD, et al. (1995) Novel topology of a zinc-binding domain from a protein involved in regulating early Xenopus development. EMBO J 14: 5947–5956.
[9]
Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, et al. (2001) The tripartite motif family identifies cell compartments. EMBO J 20: 2140–2151. doi: 10.1093/emboj/20.9.2140
[10]
Sebastian S, Luban J (2005) TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2: 40.
[11]
Stremlau M, Perron M, Lee M, Li Y, Song B, et al. (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 103: 5514–5519. doi: 10.1073/pnas.0509996103
[12]
Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469: 424–427. doi: 10.1038/nature09640
[13]
Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283: 80–83. doi: 10.1126/science.283.5398.80
[14]
Berthet-Colominas C, Monaco S, Novelli A, Sibai G, Mallet F, et al. (1999) Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J 18: 1124–1136. doi: 10.1093/emboj/18.5.1124
[15]
Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP (1993) Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73: 1067–1078. doi: 10.1016/0092-8674(93)90637-6
[16]
Franke EK, Yuan HE, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372: 359–362. doi: 10.1038/372359a0
Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K, et al. (2012) CPSF6 Defines a Conserved Capsid Interface that Modulates HIV-1 Replication. PLoS Pathog 8: e1002896. doi: 10.1371/journal.ppat.1002896
[19]
Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, et al. (2010) Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7: 221–233. doi: 10.1016/j.chom.2010.02.007
[20]
Matreyek KA, Engelman A (2011) The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 85: 7818–7827. doi: 10.1128/jvi.00325-11
[21]
Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, et al. (2010) The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 84: 397–406. doi: 10.1128/jvi.01899-09
[22]
Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, et al. (2004) High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431: 481–485. doi: 10.1038/nature02915
[23]
Tang C, Ndassa Y, Summers MF (2002) Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol 9: 537–543. doi: 10.1038/nsb806
[24]
Mortuza GB, Goldstone DC, Pashley C, Haire LF, Palmarini M, et al. (2009) Structure of the capsid amino-terminal domain from the betaretrovirus, Jaagsiekte sheep retrovirus. J Mol Biol 386: 1179–1192. doi: 10.1016/j.jmb.2008.10.066
[25]
Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N (2001) Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J Mol Biol 306: 783–797. doi: 10.1006/jmbi.2000.4395
[26]
Kingston RL, Fitzon-Ostendorp T, Eisenmesser EZ, Schatz GW, Vogt VM, et al. (2000) Structure and self-association of the Rous sarcoma virus capsid protein. Structure 8: 617–628. doi: 10.1016/s0969-2126(00)00148-9
[27]
Macek P, Chmelik J, Krizova I, Kaderavek P, Padrta P, et al. (2009) NMR structure of the N-terminal domain of capsid protein from the mason-pfizer monkey virus. J Mol Biol 392: 100–114. doi: 10.1016/j.jmb.2009.06.029
[28]
Owens CM, Song B, Perron MJ, Yang PC, Stremlau M, et al. (2004) Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J Virol 78: 5423–5437. doi: 10.1128/jvi.78.10.5423-5437.2004
[29]
Hatziioannou T, Cowan S, Von Schwedler UK, Sundquist WI, Bieniasz PD (2004) Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol 78: 6005–6012. doi: 10.1128/jvi.78.11.6005-6012.2004
[30]
Ohkura S, Goldstone DC, Yap MW, Holden-Dye K, Taylor IA, et al. (2011) Novel escape mutants suggest an extensive TRIM5alpha binding site spanning the entire outer surface of the murine leukemia virus capsid protein. PLoS Pathog 7 (3) e1002011 doi: 10.1371/journal.ppat.1002011.
[31]
Kirmaier A, Wu F, Newman RM, Hall LR, Morgan JS, et al. (2010) TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species. PLoS Biol 8 (8) e1000462 doi:10.1371/journal.pbio.1000462.
[32]
Kono K, Song H, Yokoyama M, Sato H, Shioda T, et al. (2010) Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5alpha-mediated restriction. Retrovirology 7: 72. doi: 10.1186/1742-4690-7-72
[33]
Kuroishi A, Saito A, Shingai Y, Shioda T, Nomaguchi M, et al. (2009) Modification of a loop sequence between alpha-helices 6 and 7 of virus capsid (CA) protein in a human immunodeficiency virus type 1 (HIV-1) derivative that has simian immunodeficiency virus (SIVmac239) vif and CA alpha-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology 6: 70. doi: 10.1186/1742-4690-6-70
[34]
Miyamoto T, Yokoyama M, Kono K, Shioda T, Sato H, et al. (2011) A single amino acid of human immunodeficiency virus type 2 capsid protein affects conformation of two external loops and viral sensitivity to TRIM5alpha. PLoS One 6 (7) e22779 10.1371/journal.pone.0022779. doi: 10.1371/journal.pone.0022779
[35]
Song H, Nakayama EE, Yokoyama M, Sato H, Levy JA, et al. (2007) A single amino acid of the human immunodeficiency virus type 2 capsid affects its replication in the presence of cynomolgus monkey and human TRIM5alphas. J Virol 81: 7280–7285. doi: 10.1128/jvi.00406-07
[36]
Onyango CO, Leligdowicz A, Yokoyama M, Sato H, Song H, et al. (2010) HIV-2 capsids distinguish high and low virus load patients in a West African community cohort. Vaccine 28 Suppl 2: B60–67. doi: 10.1016/j.vaccine.2009.08.060
[37]
Kamada K, Igarashi T, Martin MA, Khamsri B, Hatcho K, et al. (2006) Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proc Natl Acad Sci U S A 103: 16959–16964. doi: 10.1073/pnas.0608289103
[38]
Nagao T, Hatcho K, Doi N, Fujiwara S, Adachi A, et al. (2009) Amino acid alterations in Gag that confer the ability to grow in simian cells on HIV-1 are located at a narrow CA region. J Med Invest 56: 21–25. doi: 10.2152/jmi.56.21
[39]
Lin TY, Emerman M (2006) Cyclophilin A interacts with diverse lentiviral capsids. Retrovirology 3: 70.
[40]
Keckesova Z, Ylinen LM, Towers GJ (2006) Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol 80: 4683–4690. doi: 10.1128/jvi.80.10.4683-4690.2006
[41]
Shi J, Aiken C (2006) Saturation of TRIM5 alpha-mediated restriction of HIV-1 infection depends on the stability of the incoming viral capsid. Virology 350: 493–500. doi: 10.1016/j.virol.2006.03.013
[42]
Pacheco B, Finzi A, Stremlau M, Sodroski J (2010) Adaptation of HIV-1 to cells expressing rhesus monkey TRIM5alpha. Virology 408: 204–212. doi: 10.1016/j.virol.2010.09.019
[43]
Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 101: 10786–10791. doi: 10.1073/pnas.0402876101
[44]
Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, et al. (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci U S A 101: 11827–11832. doi: 10.1073/pnas.0403364101
[45]
Ylinen LM, Keckesova Z, Wilson SJ, Ranasinghe S, Towers GJ (2005) Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5alpha alleles. J Virol 79: 11580–11587. doi: 10.1128/jvi.79.18.11580-11587.2005
[46]
Perron MJ, Stremlau M, Sodroski J (2006) Two surface-exposed elements of the B30.2/SPRY domain as potency determinants of N-tropic murine leukemia virus restriction by human TRIM5alpha. J Virol 80: 5631–5636. doi: 10.1128/jvi.00219-06
[47]
Kahl CA, Cannon PM, Oldenburg J, Tarantal AF, Kohn DB (2008) Tissue-specific restriction of cyclophilin A-independent HIV-1- and SIV-derived lentiviral vectors. Gene Ther 15: 1079–1089. doi: 10.1038/gt.2008.50
[48]
Kuroishi A, Bozek K, Shioda T, Nakayama EE (2010) A single amino acid substitution of the human immunodeficiency virus type 1 capsid protein affects viral sensitivity to TRIM5 alpha. Retrovirology 7: 58. doi: 10.1186/1742-4690-7-58
[49]
Miyamoto T, Yokoyama M, Kono K, Shioda T, Sato H, et al. (2011) A single amino acid of human immunodeficiency virus type 2 capsid protein affects conformation of two external loops and viral sensitivity to TRIM5alpha. PLoS One 6 (7) e22779 doi: 10.1371/journal.pone.0022779.
[50]
Nomaguchi M, Yokoyama M, Kono K, Nakayama EE, Shioda T, et al. (2013) Gag-CA Q110D mutation elicits TRIM5-independent enhancement of HIV-1mt replication in macaque cells. Microbes Infect 15: 56–65. doi: 10.1016/j.micinf.2012.10.013
[51]
Maillard PV, Zoete V, Michielin O, Trono D (2011) Homology-based identification of capsid determinants that protect HIV1 from human TRIM5alpha restriction. J Biol Chem 286: 8128–8140. doi: 10.1074/jbc.m110.187609
[52]
Maillard PV, Reynard S, Serhan F, Turelli P, Trono D (2007) Interfering residues narrow the spectrum of MLV restriction by human TRIM5alpha. PLoS Pathog 3 (12) e200 doi: 10.1371/journal.ppat.0030200.
[53]
Newman RM, Hall L, Connole M, Chen GL, Sato S, et al. (2006) Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc Natl Acad Sci U S A 103: 19134–19139. doi: 10.1073/pnas.0605838103
[54]
Newman RM, Hall L, Kirmaier A, Pozzi LA, Pery E, et al. (2008) Evolution of a TRIM5-CypA splice isoform in old world monkeys. PLoS Pathog 4 (2) e1000003 doi: 10.1371/journal.ppat.1000003.
[55]
Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T (2008) Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci U S A 105: 3563–3568. doi: 10.1073/pnas.0709258105
[56]
Lim SY, Rogers T, Chan T, Whitney JB, Kim J, et al. (2010) TRIM5alpha Modulates Immunodeficiency Virus Control in Rhesus Monkeys. PLoS Pathog 6: e1000738. doi: 10.1371/journal.ppat.1000738
[57]
Wilson SJ, Webb BL, Maplanka C, Newman RM, Verschoor EJ, et al. (2008) Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J Virol 82: 7243–7247. doi: 10.1128/jvi.00307-08
[58]
Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, et al. (2008) Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci U S A 105: 3557–3562. doi: 10.1073/pnas.0709003105
[59]
Brennan G, Kozyrev Y, Hu SL (2008) TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci U S A 105: 3569–3574. doi: 10.1073/pnas.0709511105
[60]
Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B (2007) A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS 21 Suppl 8: S19–26. doi: 10.1097/01.aids.0000304692.09143.1b
[61]
Apetrei C, Robertson DL, Marx PA (2004) The history of SIVS and AIDS: epidemiology, phylogeny and biology of isolates from naturally SIV infected non-human primates (NHP) in Africa. Front Biosci 9: 225–254. doi: 10.2741/1154
[62]
Gardner MB (2003) Simian AIDS: an historical perspective. J Med Primatol 32: 180–186. doi: 10.1034/j.1600-0684.2003.00023.x
[63]
Mansfield KG, Lerch NW, Gardner MB, Lackner AA (1995) Origins of simian immunodeficiency virus infection in macaques at the New England Regional Primate Research Center. J Med Primatol 24: 116–122. doi: 10.1111/j.1600-0684.1995.tb00156.x
[64]
Daniel MD, Letvin NL, King NW, Kannagi M, Sehgal PK, et al. (1985) Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science 228: 1201–1204. doi: 10.1126/science.3159089
[65]
Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, et al. (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87: 1285–1294. doi: 10.1016/s0092-8674(00)81823-1
[66]
Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T, et al. (2009) Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 16: 1036–1042. doi: 10.1038/nsmb.1667
[67]
Zhao G, Ke D, Vu T, Ahn J, Shah VB, et al. (2011) Rhesus TRIM5alpha disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog 7 (3) e1002009 doi: 10.1371/journal.ppat.1002009.
[68]
Black LR, Aiken C (2010) TRIM5alpha disrupts the structure of assembled HIV-1 capsid complexes in vitro. J Virol 84: 6564–6569. doi: 10.1128/jvi.00210-10
[69]
Langelier CR, Sandrin V, Eckert DM, Christensen DE, Chandrasekaran V, et al. (2008) Biochemical characterization of a recombinant TRIM5alpha protein that restricts human immunodeficiency virus type 1 replication. J Virol 82: 11682–11694. doi: 10.1128/jvi.01562-08
[70]
Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, et al. (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci U S A 108: 534–539. doi: 10.1073/pnas.1013426108
[71]
Biris N, Yang Y, Taylor AB, Tomashevski A, Guo M, et al. (2012) Structure of the rhesus monkey TRIM5alpha PRYSPRY domain, the HIV capsid recognition module. Proc Natl Acad Sci U S A 109: 13278–13283. doi: 10.1073/pnas.1203536109
[72]
Yang H, Ji X, Zhao G, Ning J, Zhao Q, et al. (2012) Structural insight into HIV-1 capsid recognition by rhesus TRIM5alpha. Proc Natl Acad Sci U S A 109: 18372–18377. doi: 10.1073/pnas.1210903109
[73]
Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, et al. (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472: 361–365. doi: 10.1038/nature09976
[74]
Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18: 203–217. doi: 10.1016/j.sbi.2008.02.001
[75]
Hahn BH, Shaw GM, De Cock KM, Sharp PM (2000) AIDS as a zoonosis: scientific and public health implications. Science 287: 607–614. doi: 10.1126/science.287.5453.607
[76]
Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32: W590–594. doi: 10.1093/nar/gkh477
[77]
Ylinen LM, Price AJ, Rasaiyaah J, Hue S, Rose NJ, et al. (2010) Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 6 (8) e1001062 doi:10.1371/journal.ppat.1001062.
[78]
Howard BR, Vajdos FF, Li S, Sundquist WI, Hill CP (2003) Structural insights into the catalytic mechanism of cyclophilin A. Nat Struct Biol 10: 475–481. doi: 10.1038/nsb927
[79]
Raaum RL, Sterner KN, Noviello CM, Stewart CB, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48: 237–257. doi: 10.1016/j.jhevol.2004.11.007
[80]
Lee K, Mulky A, Yuen W, Martin TD, Meyerson NR, et al. (2012) HIV-1 capsid-targeting domain of cleavage and polyadenylation specificity factor 6. J Virol 86: 3851–3860. doi: 10.1128/jvi.06607-11
[81]
Yap MW, Dodding MP, Stoye JP (2006) Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol 80: 4061–4067. doi: 10.1128/jvi.80.8.4061-4067.2006
Nisole S, Lynch C, Stoye JP, Yap MW (2004) A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci U S A 101: 13324–13328. doi: 10.1073/pnas.0404640101
[84]
Sayah DM, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430: 569–573. doi: 10.1038/nature02777
[85]
Malfavon-Borja R, Wu LI, Emerman M, Malik HS (2013) Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes. Proc Natl Acad Sci U S A (7) E583–92. doi: 10.1073/pnas.1216542110
[86]
Ohkura S, Yap MW, Sheldon T, Stoye JP (2006) All three variable regions of the TRIM5alpha B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol 80: 8554–8565. doi: 10.1128/jvi.00688-06
[87]
Dietrich EA, Jones-Engel L, Hu SL (2011) Evolution of the antiretroviral restriction factor TRIMCyp in Old World primates. PLoS One 5: e14019. doi: 10.1371/journal.pone.0014019
[88]
Compton AA, Emerman M (2013) Convergence and Divergence in the Evolution of the APOBEC3G-Vif Interaction Reveal Ancient Origins of Simian Immunodeficiency Viruses. PLoS Pathog 9 (1) e1003135 doi:10.1371/journal.ppat.1003135.
[89]
Keckesova Z, Ylinen LM, Towers GJ, Gifford RJ, Katzourakis A (2009) Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology 384: 7–11. doi: 10.1016/j.virol.2008.10.045
[90]
Gifford RJ, Katzourakis A, Tristem M, Pybus OG, Winters M, et al. (2008) A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A 105: 20362–20367. doi: 10.1073/pnas.0807873105
[91]
Han GZ, Worobey M (2012) Endogenous lentiviral elements in the weasel family (mustelidae). Mol Biol Evol 29: 2905–2908. doi: 10.1093/molbev/mss126
[92]
Cui J, Holmes EC (2012) Endogenous lentiviruses in the ferret genome. J Virol 86: 3383–3385. doi: 10.1128/jvi.06652-11
[93]
Goldstone DC, Yap MW, Robertson LE, Haire LF, Taylor WR, et al. (2010) Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe 8: 248–259. doi: 10.1016/j.chom.2010.08.006
[94]
Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, et al. (2002) Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 5: 555–565. doi: 10.1006/mthe.2002.0585
[95]
Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Volume 276, Methods in Enzymology. New York: Academic Press. p. 307–326.
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi: 10.1107/s0907444909052925
[98]
Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, et al. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64: 61–69. doi: 10.1107/s090744490705024x
[99]
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[100]
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21. doi: 10.1107/s0907444909042073
[101]
Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591. doi: 10.1093/molbev/msm088