全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IL-21 Restricts Virus-driven Treg Cell Expansion in Chronic LCMV Infection

DOI: 10.1371/journal.ppat.1003362

Full-Text   Cite this paper   Add to My Lib

Abstract:

Foxp3+ regulatory T (Treg) cells are essential for the maintenance of immune homeostasis and tolerance. During viral infections, Treg cells can limit the immunopathology resulting from excessive inflammation, yet potentially inhibit effective antiviral T cell responses and promote virus persistence. We report here that the fast-replicating LCMV strain Docile triggers a massive expansion of the Treg population that directly correlates with the size of the virus inoculum and its tendency to establish a chronic, persistent infection. This Treg cell proliferation was greatly enhanced in IL-21R?/? mice and depletion of Treg cells partially rescued defective CD8+ T cell cytokine responses and improved viral clearance in some but not all organs. Notably, IL-21 inhibited Treg cell expansion in a cell intrinsic manner. Moreover, experimental augmentation of Treg cells driven by injection of IL-2/anti-IL-2 immune complexes drastically impaired the functionality of the antiviral T cell response and impeded virus clearance. As a consequence, mice became highly susceptible to chronic infection following exposure to low virus doses. These findings reveal virus-driven Treg cell proliferation as potential evasion strategy that facilitates T cell exhaustion and virus persistence. Furthermore, they suggest that besides its primary function as a direct survival signal for antiviral CD8+ T cells during chronic infections, IL-21 may also indirectly promote CD8+ T cell poly-functionality by restricting the suppressive activity of infection-induced Treg cells.

References

[1]  Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.
[2]  Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336. doi: 10.1038/ni904
[3]  Hori S, Takahashi T, Sakaguchi S (2003) Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81: 331–371. doi: 10.1016/s0065-2776(03)81008-8
[4]  Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4: 337–342. doi: 10.1038/ni909
[5]  Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.
[6]  Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061. doi: 10.1126/science.1079490
[7]  Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, et al. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341. doi: 10.1016/j.immuni.2005.01.016
[8]  Rudensky AY (2011) Regulatory T cells and Foxp3. Immunol Rev 241: 260–268. doi: 10.1111/j.1600-065x.2011.01018.x
[9]  Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133: 775–787. doi: 10.1016/j.cell.2008.05.009
[10]  Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9: 239–244. doi: 10.1038/ni1572
[11]  Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27: 20–21. doi: 10.1136/jmg.38.12.874
[12]  Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73.
[13]  Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, et al. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27: 18–20.
[14]  Freyschmidt EJ, Mathias CB, Diaz N, MacArthur DH, Laouar A, et al. (2010) Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses. J Immunol 185: 1295–1302. doi: 10.4049/jimmunol.0903144
[15]  Fulton RB, Meyerholz DK, Varga SM (2010) Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol 185: 2382–2392. doi: 10.4049/jimmunol.1000423
[16]  Lanteri MC, O'Brien KM, Purtha WE, Cameron MJ, Lund JM, et al. (2009) Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest 119: 3266–3277. doi: 10.1172/jci39387
[17]  Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT (2004) CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 172: 4123–4132. doi: 10.4049/jimmunol.172.7.4123
[18]  Dietze KK, Zelinskyy G, Gibbert K, Schimmer S, Francois S, et al. (2011) Transient depletion of regulatory T cells in transgenic mice reactivates virus-specific CD8+ T cells and reduces chronic retroviral set points. Proc Natl Acad Sci U S A 108: 2420–2425. doi: 10.1073/pnas.1015148108
[19]  Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207: 1409–1420. doi: 10.1084/jem.20091885
[20]  Suffia IJ, Reckling SK, Piccirillo CA, Goldszmid RS, Belkaid Y (2006) Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J Exp Med 203: 777–788. doi: 10.1084/jem.20052056
[21]  Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT (2003) CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 198: 889–901. doi: 10.1084/jem.20030171
[22]  Zelinskyy G, Dietze KK, Husecken YP, Schimmer S, Nair S, et al. (2009) The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood 114: 3199–3207. doi: 10.1182/blood-2009-03-208736
[23]  Lund JM, Hsing L, Pham TT, Rudensky AY (2008) Coordination of early protective immunity to viral infection by regulatory T cells. Science 320: 1220–1224. doi: 10.1126/science.1155209
[24]  Dittmer U, He H, Messer RJ, Schimmer S, Olbrich AR, et al. (2004) Functional impairment of CD8(+) T cells by regulatory T cells during persistent retroviral infection. Immunity 20: 293–303. doi: 10.1016/s1074-7613(04)00054-8
[25]  Manigold T, Shin EC, Mizukoshi E, Mihalik K, Murthy KK, et al. (2006) Foxp3+CD4+CD25+ T cells control virus-specific memory T cells in chimpanzees that recovered from hepatitis C. Blood 107: 4424–4432. doi: 10.1182/blood-2005-09-3903
[26]  Richards MH, Getts MT, Podojil JR, Jin YH, Kim BS, et al. (2011) Virus expanded regulatory T cells control disease severity in the Theiler's virus mouse model of MS. J Autoimmun 36: 142–154. doi: 10.1016/j.jaut.2010.12.005
[27]  Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6: 353–360. doi: 10.1038/ni1181
[28]  Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, et al. (2004) An immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in hepatitis C virus infection. Hepatology 40: 1062–1071. doi: 10.1002/hep.20454
[29]  Nilsson J, Boasso A, Velilla PA, Zhang R, Vaccari M, et al. (2006) HIV-1-driven regulatory T-cell accumulation in lymphoid tissues is associated with disease progression in HIV/AIDS. Blood 108: 3808–3817. doi: 10.1182/blood-2006-05-021576
[30]  Moskophidis D, Lechner F, Pircher H, Zinkernagel RM (1993) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362: 758–761. doi: 10.1038/362758a0
[31]  Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, et al. (1998) Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 187: 1383–1393. doi: 10.1084/jem.187.9.1383
[32]  Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, et al. (2007) Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27: 670–684. doi: 10.1016/j.immuni.2007.09.006
[33]  Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, et al. (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188: 2205–2213. doi: 10.1084/jem.188.12.2205
[34]  Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138: 30–50. doi: 10.1016/j.cell.2009.06.036
[35]  Wherry EJ (2011) T cell exhaustion. Nat Immunol 12: 492–499. doi: 10.1038/ni.2035
[36]  Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, et al. (2006) Interleukin-10 determines viral clearance or persistence in vivo. Nature medicine 12: 1301–1309. doi: 10.1038/nm1492
[37]  Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, et al. (2006) Resolution of a chronic viral infection after interleukin-10 receptor blockade. The Journal of experimental medicine 203: 2461–2472. doi: 10.1084/jem.20061462
[38]  Tinoco R, Alcalde V, Yang Y, Sauer K, Zuniga EI (2009) Cell-intrinsic transforming growth factor-beta signaling mediates virus-specific CD8+ T cell deletion and viral persistence in vivo. Immunity 31: 145–157. doi: 10.1016/j.immuni.2009.06.015
[39]  Elsaesser H, Sauer K, Brooks DG (2009) IL-21 is required to control chronic viral infection. Science 324: 1569–1572. doi: 10.1126/science.1174182
[40]  Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, et al. (2009) IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324: 1576–1580. doi: 10.1126/science.1172815
[41]  Yi JS, Du M, Zajac AJ (2009) A vital role for interleukin-21 in the control of a chronic viral infection. Science 324: 1572–1576. doi: 10.1126/science.1175194
[42]  Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311: 1924–1927. doi: 10.1126/science.1122927
[43]  Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8: 1353–1362. doi: 10.1038/ni1536
[44]  Barthlott T, Moncrieffe H, Veldhoen M, Atkins CJ, Christensen J, et al. (2005) CD25+ CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. International immunology 17: 279–288. doi: 10.1093/intimm/dxh207
[45]  Busse D, de la Rosa M, Hobiger K, Thurley K, Flossdorf M, et al. (2010) Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proceedings of the National Academy of Sciences of the United States of America 107: 3058–3063. doi: 10.1073/pnas.0812851107
[46]  McNally A, Hill GR, Sparwasser T, Thomas R, Steptoe RJ (2011) CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proceedings of the National Academy of Sciences of the United States of America 108: 7529–7534. doi: 10.1073/pnas.1103782108
[47]  Benson A, Murray S, Divakar P, Burnaevskiy N, Pifer R, et al. (2012) Microbial infection-induced expansion of effector T cells overcomes the suppressive effects of regulatory T cells via an IL-2 deprivation mechanism. Journal of immunology 188: 800–810. doi: 10.4049/jimmunol.1100769
[48]  Oldenhove G, Bouladoux N, Wohlfert EA, Hall JA, Chou D, et al. (2009) Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31: 772–786. doi: 10.1016/j.immuni.2009.10.001
[49]  Attridge K, Wang CJ, Wardzinski L, Kenefeck R, Chamberlain JL, et al. (2012) IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119: 4656–4664. doi: 10.1182/blood-2011-10-388546
[50]  Wang L, Yu CR, Kim HP, Liao W, Telford WG, et al. (2011) Key role for IL-21 in experimental autoimmune uveitis. Proceedings of the National Academy of Sciences of the United States of America 108: 9542–9547. doi: 10.1073/pnas.1018182108
[51]  Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238. doi: 10.1038/nature04753
[52]  Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189. doi: 10.1016/j.immuni.2006.01.001
[53]  Korn T, Bettelli E, Gao W, Awasthi A, Jager A, et al. (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487. doi: 10.1038/nature05970
[54]  Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, et al. (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204: 57–63. doi: 10.1084/jem.20061852
[55]  Boettler T, Spangenberg HC, Neumann-Haefelin C, Panther E, Urbani S, et al. (2005) T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. Journal of virology 79: 7860–7867. doi: 10.1128/jvi.79.12.7860-7867.2005
[56]  Xu D, Fu J, Jin L, Zhang H, Zhou C, et al. (2006) Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. Journal of immunology 177: 739–747. doi: 10.4049/jimmunol.177.1.739
[57]  Brandt L, Benfield T, Mens H, Clausen LN, Katzenstein TL, et al. (2011) Low level of regulatory T cells and maintenance of balance between regulatory T cells and TH17 cells in HIV-1-infected elite controllers. Journal of acquired immune deficiency syndromes 57: 101–108. doi: 10.1097/qai.0b013e318215a991
[58]  Punkosdy GA, Blain M, Glass DD, Lozano MM, O'Mara L, et al. (2011) Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proceedings of the National Academy of Sciences of the United States of America 108: 3677–3682. doi: 10.1073/pnas.1100213108
[59]  Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, et al. (2006) Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25: 129–141. doi: 10.1016/j.immuni.2006.04.015
[60]  Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, et al. (1993) Immune responses in interleukin-2-deficient mice. Science 262: 1059–1061. doi: 10.1126/science.8235625
[61]  Williams MA, Tyznik AJ, Bevan MJ (2006) Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441: 890–893. doi: 10.1038/nature04790
[62]  Richter K, Perriard G, Oxenius A (2012) Reversal of chronic to resolved infection by IL-10 blockade is LCMV strain dependent. Eur J Immunol 43: 649–654. doi: 10.1002/eji.201242887
[63]  Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, et al. (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682–687. doi: 10.1038/nature04444
[64]  Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, et al. (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature immunology 10: 29–37. doi: 10.1038/ni.1679
[65]  Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, et al. (2008) Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. The Journal of experimental medicine 205: 2763–2779. doi: 10.1084/jem.20081398
[66]  Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, et al. (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354. doi: 10.1038/nature05115
[67]  Coquet JM, Chakravarti S, Smyth MJ, Godfrey DI (2008) Cutting edge: IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. Journal of immunology 180: 7097–7101. doi: 10.4049/jimmunol.180.11.7097
[68]  Sonderegger I, Kisielow J, Meier R, King C, Kopf M (2008) IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. European journal of immunology 38: 1833–1838. doi: 10.1002/eji.200838511
[69]  Harker JA, Lewis GM, Mack L, Zuniga EI (2011) Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334: 825–829. doi: 10.1126/science.1208421
[70]  Spolski R, Wang L, Wan CK, Bonville CA, Domachowske JB, et al. (2012) IL-21 promotes the pathologic immune response to pneumovirus infection. Journal of immunology 188: 1924–1932. doi: 10.4049/jimmunol.1100767
[71]  Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, et al. (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 339–342. doi: 10.1038/368339a0
[72]  Oxenius A, Bachmann MF, Zinkernagel RM, Hengartner H (1998) Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. European journal of immunology 28: 390–400. doi: 10.1002/(sici)1521-4141(199801)28:01<390::aid-immu390>3.3.co;2-f
[73]  Fr?hlich A, Marsland BJ, Sonderegger I, Kurrer M, Hodge MR, et al. (2007) IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood 109: 2023–2031. doi: 10.1182/blood-2006-05-021600
[74]  Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96. doi: 10.1126/science.274.5284.94
[75]  Battegay M, Cooper S, Althage A, B?nziger J, Hengartner H, et al. (1991) Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods 191–198. doi: 10.1016/0166-0934(91)90018-u

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133