全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of Targets of CD8+ T Cell Responses to Malaria Liver Stages by Genome-wide Epitope Profiling

DOI: 10.1371/journal.ppat.1003303

Full-Text   Cite this paper   Add to My Lib

Abstract:

CD8+ T cells mediate immunity against Plasmodium liver stages. However, the paucity of parasite-specific epitopes of CD8+ T cells has limited our current understanding of the mechanisms influencing the generation, maintenance and efficiency of these responses. To identify antigenic epitopes in a stringent murine malaria immunisation model, we performed a systematic profiling of H2b-restricted peptides predicted from genome-wide analysis. We describe the identification of Plasmodium berghei (Pb) sporozoite-specific gene 20 (S20)- and thrombospondin-related adhesive protein (TRAP)-derived peptides, termed PbS20318 and PbTRAP130 respectively, as targets of CD8+ T cells from C57BL/6 mice vaccinated by whole parasite strategies known to protect against sporozoite challenge. While both PbS20318 and PbTRAP130 elicit effector and effector memory phenotypes in both the spleens and livers of immunised mice, only PbTRAP130-specific CD8+ T cells exhibit in vivo cytotoxicity. Moreover, PbTRAP130-specific, but not PbS20318-specific, CD8+ T cells significantly contribute to inhibition of parasite development. Prime/boost vaccination with PbTRAP demonstrates CD8+ T cell-dependent efficacy against sporozoite challenge. We conclude that PbTRAP is an immunodominant antigen during liver-stage infection. Together, our results underscore the presence of CD8+ T cells with divergent potencies against distinct Plasmodium liver-stage epitopes. Our identification of antigen-specific CD8+ T cells will allow interrogation of the development of immune responses against malaria liver stages.

References

[1]  World-Health-Organisation (2012) World Malaria Report 2012.
[2]  Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, et al. (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413–431. doi: 10.1016/s0140-6736(12)60034-8
[3]  Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216: 160–162. doi: 10.1038/216160a0
[4]  Clyde DF, Most H, McCarthy VC, Vanderberg JP (1973) Immunization of man against sporozite-induced falciparum malaria. Am J Med Sci 266: 169–177. doi: 10.1097/00000441-197309000-00002
[5]  Mueller AK, Labaied M, Kappe SH, Matuschewski K (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433: 164–167. doi: 10.1038/nature03188
[6]  Belnoue E, Costa FT, Frankenberg T, Vigario AM, Voza T, et al. (2004) Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol 172: 2487–2495. doi: 10.4049/jimmunol.172.4.2487
[7]  Putrianti ED, Silvie O, Kordes M, Borrmann S, Matuschewski K (2009) Vaccine-like immunity against malaria by repeated causal-prophylactic treatment of liver-stage Plasmodium parasites. J Infect Dis 199: 899–903. doi: 10.1086/597121
[8]  Friesen J, Silvie O, Putrianti ED, Hafalla JC, Matuschewski K, et al. (2010) Natural immunization against malaria: causal prophylaxis with antibiotics. Sci Transl Med 2: 40ra49. doi: 10.1126/scitranslmed.3001058
[9]  Offeddu V, Thathy V, Marsh K, Matuschewski K (2012) Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int J Parasitol 42: 535–548. doi: 10.1016/j.ijpara.2012.03.011
[10]  Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, et al. (1987) Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330: 664–666. doi: 10.1038/330664a0
[11]  Weiss WR, Sedegah M, Beaudoin RL, Miller LH, Good MF (1988) CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A 85: 573–576. doi: 10.1073/pnas.85.2.573
[12]  Ferreira A, Schofield L, Enea V, Schellekens H, van der Meide P, et al. (1986) Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science 232: 881–884. doi: 10.1126/science.3085218
[13]  Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A (2010) From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum Vaccin 6: 90–96. doi: 10.4161/hv.6.1.9677
[14]  Morrot A, Zavala F (2004) Effector and memory CD8+ T cells as seen in immunity to malaria. Immunol Rev 201: 291–303. doi: 10.1111/j.0105-2896.2004.00175.x
[15]  Overstreet MG, Cockburn IA, Chen YC, Zavala F (2008) Protective CD8 T cells against Plasmodium liver stages: immunobiology of an ‘unnatural’ immune response. Immunol Rev 225: 272–283. doi: 10.1111/j.1600-065x.2008.00671.x
[16]  Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nussenzweig V, et al. (1989) Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341: 323–326. doi: 10.1038/341323a0
[17]  Weiss WR, Mellouk S, Houghten RA, Sedegah M, Kumar S, et al. (1990) Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 171: 763–773. doi: 10.1084/jem.171.3.763
[18]  Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC, et al. (2006) The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444: 937–940. doi: 10.1038/nature05361
[19]  Gruner AC, Mauduit M, Tewari R, Romero JF, Depinay N, et al. (2007) Sterile protection against malaria is independent of immune responses to the circumsporozoite protein. PLoS ONE 2: e1371. doi: 10.1371/journal.pone.0001371
[20]  Hafalla JC, Silvie O, Matuschewski K (2011) Cell biology and immunology of malaria. Immunol Rev 240: 297–316. doi: 10.1111/j.1600-065x.2010.00988.x
[21]  Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, et al. (2010) The immune epitope database 2.0. Nucleic Acids Res 38: D854–862. doi: 10.1093/nar/gkp1004
[22]  Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, et al. (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24: 817–819. doi: 10.1038/nbt1215
[23]  Yauch LE, Zellweger RM, Kotturi MF, Qutubuddin A, Sidney J, et al. (2009) A protective role for dengue virus-specific CD8+ T cells. J Immunol 182: 4865–4873. doi: 10.4049/jimmunol.0801974
[24]  St Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL (2011) Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice. J Immunol 186: 3927–3933. doi: 10.4049/jimmunol.1003735
[25]  Matuschewski K, Ross J, Brown SM, Kaiser K, Nussenzweig V, et al. (2002) Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage. J Biol Chem 277: 41948–41953. doi: 10.1074/jbc.m207315200
[26]  Kaiser K, Matuschewski K, Camargo N, Ross J, Kappe SH (2004) Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol Microbiol 51: 1221–1232. doi: 10.1046/j.1365-2958.2003.03909.x
[27]  Wang Q, Brown S, Roos DS, Nussenzweig V, Bhanot P (2004) Transcriptome of axenic liver stages of Plasmodium yoelii. Mol Biochem Parasitol 137: 161–168. doi: 10.1016/j.molbiopara.2004.06.001
[28]  Rosinski-Chupin I, Chertemps T, Boisson B, Perrot S, Bischoff E, et al. (2007) Serial analysis of gene expression in Plasmodium berghei salivary gland sporozoites. BMC Genomics 8: 466. doi: 10.1186/1471-2164-8-466
[29]  Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, et al. (2008) A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci U S A 105: 305–310. doi: 10.1073/pnas.0710780104
[30]  Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, et al. (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12: 1007–1017. doi: 10.1110/ps.0239403
[31]  Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6: 132.
[32]  Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, et al. (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307: 82–86. doi: 10.1126/science.1103717
[33]  Doolan DL, Southwood S, Freilich DA, Sidney J, Graber NL, et al. (2003) Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc Natl Acad Sci U S A 100: 9952–9957. doi: 10.1073/pnas.1633254100
[34]  Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, et al. (2008) Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8: 4680–4694. doi: 10.1002/pmic.200800194
[35]  Carvalho LH, Hafalla JC, Zavala F (2001) ELISPOT assay to measure antigen-specific murine CD8(+) T cell responses. J Immunol Methods 252: 207–218. doi: 10.1016/s0022-1759(01)00331-3
[36]  Beaudoin RL, Strome CP, Mitchell F, Tubergen TA (1977) Plasmodium berghei: immunization of mice against the ANKA strain using the unaltered sporozoite as an antigen. Exp Parasitol 42: 1–5. doi: 10.1016/0014-4894(77)90054-6
[37]  Alger NE, Harant J (1976) Plasmodium berghei: heat-treated sporozoite vaccination of mice. Exp Parasitol 40: 261–268. doi: 10.1016/0014-4894(76)90089-8
[38]  Hafalla JC, Rai U, Morrot A, Bernal-Rubio D, Zavala F, et al. (2006) Priming of CD8+ T cell responses following immunization with heat-killed Plasmodium sporozoites. Eur J Immunol 36: 1179–1186. doi: 10.1002/eji.200535712
[39]  Robson KJ, Naitza S, Barker G, Sinden RE, Crisanti A (1997) Cloning and expression of the thrombospondin related adhesive protein gene of Plasmodium berghei. Mol Biochem Parasitol 84: 1–12. doi: 10.1016/s0166-6851(96)02774-0
[40]  Rogers WO, Rogers MD, Hedstrom RC, Hoffman SL (1992) Characterization of the gene encoding sporozoite surface protein 2, a protective Plasmodium yoelii sporozoite antigen. Mol Biochem Parasitol 53: 45–51. doi: 10.1016/0166-6851(92)90005-5
[41]  Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, et al. (1997) TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites. Cell 90: 511–522. doi: 10.1016/s0092-8674(00)80511-5
[42]  Matuschewski K, Nunes AC, Nussenzweig V, Menard R (2002) Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. Embo J 21: 1597–1606. doi: 10.1093/emboj/21.7.1597
[43]  Webster DP, Dunachie S, Vuola JM, Berthoud T, Keating S, et al. (2005) Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc Natl Acad Sci U S A 102: 4836–4841. doi: 10.1073/pnas.0406381102
[44]  Bejon P, Andrews L, Andersen RF, Dunachie S, Webster D, et al. (2005) Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J Infect Dis 191: 619–626. doi: 10.1086/427243
[45]  Dunachie SJ, Walther M, Epstein JE, Keating S, Berthoud T, et al. (2006) A DNA prime-modified vaccinia virus ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect Immun 74: 5933–5942. doi: 10.1128/iai.00590-06
[46]  Bejon P, Mwacharo J, Kai O, Mwangi T, Milligan P, et al. (2006) A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin Trials 1: e29. doi: 10.1371/journal.pctr.0010029
[47]  Barber DL, Wherry EJ, Ahmed R (2003) Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171: 27–31. doi: 10.4049/jimmunol.171.1.27
[48]  Aichele P, Brduscha-Riem K, Oehen S, Odermatt B, Zinkernagel RM, et al. (1997) Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 6: 519–529. doi: 10.1016/s1074-7613(00)80340-4
[49]  Redmond WL, Marincek BC, Sherman LA (2005) Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J Immunol 174: 2046–2053. doi: 10.4049/jimmunol.174.4.2046
[50]  Mendez-Fernandez YV, Johnson AJ, Rodriguez M, Pease LR (2003) Clearance of Theiler's virus infection depends on the ability to generate a CD8+ T cell response against a single immunodominant viral peptide. Eur J Immunol 33: 2501–2510. doi: 10.1002/eji.200324007
[51]  Rosenberg CS, Martin DL, Tarleton RL (2010) CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of Trypanosoma cruzi infection but are not required for resistance. J Immunol 185: 560–568. doi: 10.4049/jimmunol.1000432
[52]  van der Most RG, Murali-Krishna K, Lanier JG, Wherry EJ, Puglielli MT, et al. (2003) Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology 315: 93–102. doi: 10.1016/j.virol.2003.07.001
[53]  Webby RJ, Andreansky S, Stambas J, Rehg JE, Webster RG, et al. (2003) Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci U S A 100: 7235–7240. doi: 10.1073/pnas.1232449100
[54]  Thomas PG, Brown SA, Keating R, Yue W, Morris MY, et al. (2007) Hidden epitopes emerge in secondary influenza virus-specific CD8+ T cell responses. J Immunol 178: 3091–3098. doi: 10.4049/jimmunol.178.5.3091
[55]  White KL, Snyder HL, Krzych U (1996) MHC class I-dependent presentation of exoerythrocytic antigens to CD8+ T lymphocytes is required for protective immunity against Plasmodium berghei. J Immunol 156: 3374–3381.
[56]  Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, et al. (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415: 331–335. doi: 10.1038/415331a
[57]  Gilbert SC, Schneider J, Hannan CM, Hu JT, Plebanski M, et al. (2002) Enhanced CD8 T cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine 20: 1039–1045. doi: 10.1016/s0264-410x(01)00450-9
[58]  Reyes-Sandoval A, Berthoud T, Alder N, Siani L, Gilbert SC, et al. (2010) Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect Immun 78: 145–153. doi: 10.1128/iai.00740-09
[59]  Hafalla JC, Cockburn IA, Zavala F (2006) Protective and pathogenic roles of CD8+ T cells during malaria infection. Parasite Immunol 28: 15–24. doi: 10.1111/j.1365-3024.2006.00777.x
[60]  Weiss WR, Houghten RA, Good MF, Berzofsky JA, Miller LH, et al. (1990) A CTL epitope on the circumsporozoite protein of P. yoelii. Bull World Health Organ 68 Suppl: 99–103.
[61]  Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511. doi: 10.1038/nature01097
[62]  Mishra S, Rai U, Shiratsuchi T, Li X, Vanloubbeeck Y, et al. (2011) Identification of non-CSP antigens bearing CD8 epitopes in mice immunized with irradiated sporozoites. Vaccine 29: 7335–7342. doi: 10.1016/j.vaccine.2011.07.081
[63]  Rodrigues M, Nussenzweig RS, Zavala F (1993) The relative contribution of antibodies, CD4+ and CD8+ T cells to sporozoite-induced protection against malaria. Immunology 80: 1–5.
[64]  Li S, Rodrigues M, Rodriguez D, Rodriguez JR, Esteban M, et al. (1993) Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc Natl Acad Sci U S A 90: 5214–5218. doi: 10.1073/pnas.90.11.5214
[65]  Rodrigues M, Li S, Murata K, Rodriguez D, Rodriguez JR, et al. (1994) Influenza and vaccinia viruses expressing malaria CD8+ T and B cell epitopes. Comparison of their immunogenicity and capacity to induce protective immunity. J Immunol 153: 4636–4648.
[66]  Schneider J, Gilbert SC, Blanchard TJ, Hanke T, Robson KJ, et al. (1998) Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med 4: 397–402. doi: 10.1038/nm0498-397
[67]  Bruna-Romero O, Gonzalez-Aseguinolaza G, Hafalla JC, Tsuji M, Nussenzweig RS (2001) Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc Natl Acad Sci U S A 98: 11491–11496. doi: 10.1073/pnas.191380898
[68]  Gonzalez-Aseguinolaza G, Nakaya Y, Molano A, Dy E, Esteban M, et al. (2003) Induction of protective immunity against malaria by priming-boosting immunization with recombinant cold-adapted influenza and modified vaccinia Ankara viruses expressing a CD8+-T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii. J Virol 77: 11859–11866. doi: 10.1128/jvi.77.21.11859-11866.2003
[69]  Reyes-Sandoval A, Sridhar S, Berthoud T, Moore AC, Harty JT, et al. (2008) Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei. Eur J Immunol 38: 732–741. doi: 10.1002/eji.200737672
[70]  Schmidt NW, Butler NS, Harty JT (2011) Plasmodium-host interactions directly influence the threshold of memory CD8 T cells required for protective immunity. J Immunol 186: 5873–5884. doi: 10.4049/jimmunol.1100194
[71]  Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG, et al. (2012) A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 367: 22843 2284–2295. doi: 10.1056/nejmoa1208394
[72]  Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, et al. (2011) First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med 365: 1863–1875. doi: 10.1056/nejmoa1102287
[73]  Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, et al. (2001) Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 358: 1927–1934. doi: 10.1016/s0140-6736(01)06957-4
[74]  Reece WH, Pinder M, Gothard PK, Milligan P, Bojang K, et al. (2004) A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med 10: 406–410. doi: 10.1038/nm1009
[75]  Khusmith S, Sedegah M, Hoffman SL (1994) Complete protection against Plasmodium yoelii by adoptive transfer of a CD8+ cytotoxic T-cell clone recognizing sporozoite surface protein 2. Infect Immun 62: 2979–2983.
[76]  O'Hara GA, Duncan CJ, Ewer KJ, Collins KA, Elias SC, et al. (2012) Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J Infect Dis 205: 772–781. doi: 10.1093/infdis/jir850
[77]  Janse CJ, Franke-Fayard B, Mair GR, Ramesar J, Thiel C, et al. (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145: 60–70. doi: 10.1016/j.molbiopara.2005.09.007
[78]  Reyes-Sandoval A, Wyllie DH, Bauza K, Milicic A, Forbes EK, et al. (2011) CD8+ T effector memory cells protect against liver-stage malaria. J Immunol 187: 1347–1357. doi: 10.4049/jimmunol.1100302

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133