[1] | Mantel M, Holzer H (1970) Reversibility of the ATP:glutamine synthetase adenylyltransferase reaction. Proc Natl Acad Sci U S A 65: 660–667. doi: 10.1073/pnas.65.3.660
|
[2] | Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, et al. (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323: 269–272. doi: 10.1126/science.1166382
|
[3] | Worby CA, Mattoo S, Kruger RP, Corbeil LB, Koller A, et al. (2009) The fic domain: regulation of cell signaling by adenylylation. Mol Cell 34: 93–103. doi: 10.1016/j.molcel.2009.03.008
|
[4] | Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, et al. (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329: 946–949. doi: 10.1126/science.1192276
|
[5] | Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91: 119–149. doi: 10.1152/physrev.00059.2009
|
[6] | Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10: 513–525. doi: 10.1038/nrm2728
|
[7] | Andres DA, Seabra MC, Brown MS, Armstrong SA, Smeland TE, et al. (1993) cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell 73: 1091–1099. doi: 10.1016/0092-8674(93)90639-8
|
[8] | Desnoyers L, Anant JS, Seabra MC (1996) Geranylgeranylation of Rab proteins. Biochem Soc Trans 24: 699–703.
|
[9] | Collins RN (2003) “Getting it on”–GDI displacement and small GTPase membrane recruitment. Mol Cell 12: 1064–1066. doi: 10.1016/s1097-2765(03)00445-3
|
[10] | Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11: 47–56. doi: 10.1016/j.devcel.2006.05.013
|
[11] | Kagan JC, Stein MP, Pypaert M, Roy CR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199: 1201–1211. doi: 10.1084/jem.20031706
|
[12] | Derre I, Isberg RR (2004) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Infect Immun 72: 3048–3053. doi: 10.1128/iai.72.5.3048-3053.2004
|
[13] | Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, et al. (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8: 971–977. doi: 10.1038/ncb1463
|
[14] | Ensminger AW, Isberg RR (2009) Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 12: 67–73. doi: 10.1016/j.mib.2008.12.004
|
[15] | Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, et al. (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284: 4846–4856. doi: 10.1074/jbc.m807505200
|
[16] | Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318: 974–977. doi: 10.1126/science.1149121
|
[17] | Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450: 365–369. doi: 10.1038/nature06336
|
[18] | Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, et al. (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333: 453–456. doi: 10.1126/science.1207193
|
[19] | Tan Y, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475: 506–509. doi: 10.1038/nature10307
|
[20] | Anderson WB, Stadtman ER (1970) Glutamine synthetase deadenylation: a phosphorolytic reaction yielding ADP as nucleotide product. Biochem Biophys Res Commun 41: 704–709. doi: 10.1016/0006-291x(70)90070-7
|
[21] | Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. doi: 10.1093/nar/gkq366
|
[22] | Das AK, Helps NR, Cohen PT, Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J 15: 6798–6809.
|
[23] | Pullen KE, Ng HL, Sung PY, Good MC, Smith SM, et al. (2004) An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase. Structure 12: 1947–1954. doi: 10.1016/j.str.2004.09.008
|
[24] | Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139: 468–484. doi: 10.1016/j.cell.2009.10.006
|
[25] | Sugiura T, Noguchi Y (2009) Substrate-dependent metal preference of PPM1H, a cancer-associated protein phosphatase 2C: comparison with other family members. Biometals 22: 469–477. doi: 10.1007/s10534-009-9204-9
|
[26] | Romani A, Scarpa A (1992) Regulation of cell magnesium. Arch Biochem Biophys 298: 1–12. doi: 10.1016/0003-9861(92)90086-c
|
[27] | Jackson MD, Fjeld CC, Denu JM (2003) Probing the function of conserved residues in the serine/threonine phosphatase PP2Calpha. Biochemistry 42: 8513–8521. doi: 10.1021/bi034074+
|
[28] | Fjeld CC, Denu JM (1999) Kinetic analysis of human serine/threonine protein phosphatase 2Calpha. J Biol Chem 274: 20336–20343. doi: 10.1074/jbc.274.29.20336
|
[29] | Bellinzoni M, Wehenkel A, Shepard W, Alzari PM (2007) Insights into the catalytic mechanism of PPM Ser/Thr phosphatases from the atomic resolution structures of a mycobacterial enzyme. Structure 15: 863–872. doi: 10.1016/j.str.2007.06.002
|
[30] | Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE, et al. (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477: 103–106. doi: 10.1038/nature10335
|
[31] | Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A, et al. (2012) Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31: 1774–1784. doi: 10.1038/emboj.2012.16
|
[32] | Neunuebel MR, Mohammadi S, Jarnik M, Machner MP (2012) Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol 194: 1389–1400. doi: 10.1128/jb.06306-11
|
[33] | Tan Y, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108: 21212–21217. doi: 10.1073/pnas.1114023109
|
[34] | Wehenkel A, Bellinzoni M, Schaeffer F, Villarino A, Alzari PM (2007) Structural and binding studies of the three-metal center in two mycobacterial PPM Ser/Thr protein phosphatases. J Mol Biol 374: 890–898. doi: 10.1016/j.jmb.2007.09.076
|
[35] | Su J, Schlicker C, Forchhammer K (2011) A third metal is required for catalytic activity of the signal-transducing protein phosphatase M tPphA. J Biol Chem 286: 13481–13488. doi: 10.1074/jbc.m109.036467
|
[36] | Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2: e46. doi: 10.1371/journal.ppat.0020046
|
[37] | Nagem RA, Ambrosio AL, Rojas AL, Navarro MV, Golubev AM, et al. (2005) Getting the most out of X-ray home sources. Acta Crystallogr D Biol Crystallogr 61: 1022–1030. doi: 10.1107/s0907444905012989
|
[38] | Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64: 112–122. doi: 10.1107/s0108767307043930
|
[39] | Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi: 10.1107/s0907444909052925
|
[40] | Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
|
[41] | Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763. doi: 10.1107/s0907444994003112
|
[42] | Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255. doi: 10.1107/s0907444996012255
|
[43] | Chen R, Weng Z (2003) A novel shape complementarity scoring function for protein-protein docking. Proteins 51: 397–408. doi: 10.1002/prot.10334
|
[44] | Cheng TM, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68: 503–515. doi: 10.1002/prot.21419
|
[45] | Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668–1688. doi: 10.1002/jcc.20290
|
[46] | Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21: 1049–1074. doi: 10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.0.co;2-f
|
[47] | Case DA, Darden TA, Cheatham TEI, LSimmerling C, Wang J, et al.. (2012) AMBER 12.
|
[48] | Ellis KJ, Morrison JF (1982) Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87: 405–426. doi: 10.1016/s0076-6879(82)87025-0
|