全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

T-Cell Tropism of Simian Varicella Virus during Primary Infection

DOI: 10.1371/journal.ppat.1003368

Full-Text   Cite this paper   Add to My Lib

Abstract:

Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host.

References

[1]  Cohen JI, Straus SE, Arvin AM (2007) Varicella-zoster virus replication, pathogenesis, and management. In: Knipe DM, Howley PM, editors. Fields Virology. 5th edition. Philadelphia, PA: Lippincott-Williams and Wilkins. pp. 2773–2818.
[2]  Grose C (1981) Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 68: 735–737.
[3]  Heininger U, Seward JF (2006) Varicella. Lancet 368: 1365–1376. doi: 10.1016/s0140-6736(06)69561-5
[4]  Asano Y, Itakura N, Hiroishi Y, Hirose S, Ozaki T, et al. (1985) Viral replication and immunologic responses in children naturally infected with varicella-zoster virus and in varicella vaccine recipients. J Infect Dis 152: 863–868. doi: 10.1093/infdis/152.5.863
[5]  Koropchak CM, Graham G, Palmer J, Winsberg M, Ting SF, et al. (1991) Investigation of varicella-zoster virus infection by polymerase chain reaction in the immunocompetent host with acute varicella. J Infect Dis 163: 1016–1022. doi: 10.1093/infdis/163.5.1016
[6]  Arvin AM, Moffat JF, Sommer M, Oliver S, Che X, et al. (2010) Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr Top Microbiol Immunol 342: 189–209. doi: 10.1007/82_2010_29
[7]  Zerboni L, Reichelt M, Arvin A (2010) Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts. Curr Top Microbiol Immunol 342: 255–276. doi: 10.1007/82_2009_8
[8]  Moffat JF, Stein MD, Kaneshima H, Arvin AM (1995) Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. J Virol 69: 5236–5242.
[9]  Ku CC, Besser J, Abendroth A, Grose C, Arvin AM (2005) Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 79: 2651–2658. doi: 10.1128/jvi.79.5.2651-2658.2005
[10]  Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM (2002) Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol 76: 11425–11433. doi: 10.1128/jvi.76.22.11425-11433.2002
[11]  Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, et al. (2004) Varicella-zoster virus transfer to skin by T cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 200: 917–925. doi: 10.1084/jem.20040634
[12]  Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM (2005) Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci U S A 102: 6490–6495. doi: 10.1073/pnas.0501045102
[13]  Mahalingam R, Messaoudi I, Gilden D (2010) Simian varicella virus pathogenesis. Curr Top Microbiol Immunol 342: 309–321. doi: 10.1007/82_2009_6
[14]  Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, et al. (2009) Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog 5: e1000657. doi: 10.1371/journal.ppat.1000657
[15]  Gray WL (2004) Simian varicella: a model for human varicella-zoster virus infections. Rev Med Virol 14: 363–381. doi: 10.1002/rmv.437
[16]  Gray WL, Starnes B, White MW, Mahalingam R (2001) The DNA sequence of the simian varicella virus genome. Virology 284: 123–130. doi: 10.1006/viro.2001.0912
[17]  Mahalingam R, Traina-Dorge V, Wellish M, Lorino R, Sanford R, et al. (2007) Simian varicella virus reactivation in cynomolgus monkeys. Virology 368: 50–59. doi: 10.1016/j.virol.2007.06.025
[18]  Mahalingam R, Traina-Dorge V, Wellish M, Deharo E, Singletary L, et al. (2010) Latent simian varicella virus reactivates in monkeys treated with tacrolimus with or without exposure to irradiation. J Neurovirol 16: 342–354. doi: 10.3109/13550284.2010.513031
[19]  Dueland AN, Martin JR, Devlin ME, Wellish M, Mahalingam R, et al. (1992) Acute simian varicella infection. Clinical, laboratory, pathologic, and virologic features. Lab Invest 66: 762–773.
[20]  Mahalingam R, Wellish M, Soike K, White T, Kleinschmidt-DeMasters BK, et al. (2001) Simian varicella virus infects ganglia before rash in experimentally infected monkeys. Virology 279: 339–342. doi: 10.1006/viro.2000.0700
[21]  Ouwendijk WJ, Mahalingam R, Traina-Dorge V, van Amerongen G, Wellish M, et al. (2012) Simian varicella virus infection of Chinese rhesus macaques produces ganglionic infection in the absence of rash. J Neurovirol 18: 91–99. doi: 10.1007/s13365-012-0083-4
[22]  de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, et al. (2007) Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3: e178. doi: 10.1371/journal.ppat.0030178
[23]  de Vries RD, Lemon K, Ludlow M, McQuaid S, Yuksel S, et al. (2010) In vivo tropism of attenuated and pathogenic measles virus expressing green fluorescent protein in macaques. J Virol 84: 4714–4724. doi: 10.1128/jvi.02633-09
[24]  de Vries RD, McQuaid S, van Amerongen G, Yuksel S, Verburgh RJ, et al. (2012) Measles immune suppression: lessons from the macaque model. PLoS Pathog 8: e1002885. doi: 10.1371/journal.ppat.1002885
[25]  Lemon K, de Vries RD, Mesman AW, McQuaid S, van Amerongen G, et al. (2011) Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog 7: e1001263. doi: 10.1371/journal.ppat.1001263
[26]  Konig A, Homme C, Hauroder B, Dietrich A, Wolff MH (2003) The varicella-zoster virus induces apoptosis in vitro in subpopulations of primary human peripheral blood mononuclear cells. Microbes Infect 5: 879–889. doi: 10.1016/s1286-4579(03)00177-1
[27]  Gray WL, Williams RJ, Chang R, Soike KF (1998) Experimental simian varicella virus infection of St. Kitts vervet monkeys. J Med Primatol 27: 177–183. doi: 10.1111/j.1600-0684.1998.tb00069.x
[28]  Beaumier CM, Harris LD, Goldstein S, Klatt NR, Whitted S, et al. (2009) CD4 downregulation by memory CD4+ T cells in vivo renders African green monkeys resistant to progressive SIVagm infection. Nat Med 15: 879–885. doi: 10.1038/nm.1970
[29]  Gebhardt T, Mackay LK (2012) Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol 3: 340. doi: 10.3389/fimmu.2012.00340
[30]  Picker LJ, Terstappen LW, Rott LS, Streeter PR, Stein H, et al. (1990) Differential expression of homing-associated adhesion molecules by T cell subsets in man. J Immunol 145: 3247–3255.
[31]  Jing L, Haas J, Chong TM, Bruckner JJ, Dann GC, et al. (2012) Cross-presentation and genome-wide screening reveal candidate T cell antigens for a herpes simplex virus type 1 vaccine. J Clin Invest 122: 654–673. doi: 10.1172/jci60556
[32]  Wolf M, Kuball J, Ho WY, Nguyen H, Manley TJ, et al. (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110: 201–210. doi: 10.1182/blood-2006-11-056168
[33]  Kirby AC, Coles MC, Kaye PM (2009) Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 183: 1983–1989. doi: 10.4049/jimmunol.0901089
[34]  Thornton EE, Looney MR, Bose O, Sen D, Sheppard D, et al. (2012) Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med 209: 1183–1199. doi: 10.1084/jem.20112667
[35]  Abendroth A, Morrow G, Cunningham AL, Slobedman B (2001) Varicella-zoster virus infection of human dendritic cells and transmission to T cells: implications for virus dissemination in the host. J Virol 75: 6183–6192. doi: 10.1128/jvi.75.13.6183-6192.2001
[36]  Roberts ED, Baskin GB, Soike K, Meiners N (1984) Transmission and scanning electron microscopy of experimental pulmonary simian varicella (Delta herpesvirus) infection in African green monkeys (Cercopithecus aethiops). J Comp Pathol 94: 323–328. doi: 10.1016/0021-9975(84)90020-3
[37]  Nikkels AF, Debrus S, Sadzot-Delvaux C, Piette J, Delvenne P, et al. (1993) Comparative immunohistochemical study of herpes simplex and varicella-zoster infections. Virchows Arch A Pathol Anat Histopathol 422: 121–126. doi: 10.1007/bf01607163
[38]  Braverman IM (1997) The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirculation 4: 329–340. doi: 10.3109/10739689709146797
[39]  Gilden DH, Vafai A, Shtram Y, Becker Y, Devlin M, et al. (1983) Varicella-zoster virus DNA in human sensory ganglia. Nature 306: 478–480. doi: 10.1038/306478a0
[40]  Kennedy PGE, Grinfeld E, Gow JW (1998) Latent varicella-zoster virus is located predominantly in neurons in human trigeminal ganglia. Proc Natl Acad Sci U S A 95: 4658–4662. doi: 10.1073/pnas.95.8.4658
[41]  Kennedy PGE, Grinfeld E, Traina-Dorge V, Gilden DH, Mahalingam R (2004) Neuronal localization of simian varicella virus DNA in ganglia of naturally infected African green monkeys. Virus Genes 28: 273–276. doi: 10.1023/b:viru.0000025774.19557.39
[42]  Wang K, Lau TY, Morales M, Mont EK, Straus SE (2005) Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal ganglia at the single-cell level. J Virol 79: 14079–14087. doi: 10.1128/jvi.79.22.14079-14087.2005
[43]  Annunziato PW, Lungu O, Panagiotidis C, Zhang JH, Silvers DN, et al. (2000) Varicella-zoster virus proteins in skin lesions: implications for a novel role of ORF29p in chickenpox. J Virol 74: 2005–2010. doi: 10.1128/jvi.74.4.2005-2010.2000
[44]  Hope-Simpson RE (1965) The nature of herpes zoster: a long-term study and a new hypothesis. Proc R Soc Med 58: 9–20.
[45]  Hanani M (2005) Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 48: 457–476. doi: 10.1016/j.brainresrev.2004.09.001
[46]  van Velzen M, Laman JD, Kleinjan A, Poot A, Osterhaus AD, et al. (2009) Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J Immunol 183: 2456–2461. doi: 10.4049/jimmunol.0900890
[47]  Reichelt M, Zerboni L, Arvin AM (2008) Mechanisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia. J Virol 82: 3971–3983. doi: 10.1128/jvi.02592-07
[48]  Grigoryan S, Kinchington PR, Yang IH, Selariu A, Zhu H, et al. (2012) Retrograde axonal transport of VZV: kinetic studies in hESC-derived neurons. J Neurovirol 18: 462–470. doi: 10.1007/s13365-012-0124-z
[49]  Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, et al. (2011) Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 85: 6220–6233. doi: 10.1128/jvi.02396-10
[50]  Mahalingam R, Wellish M, White T, Soike K, Cohrs R, et al. (1998) Infectious simian varicella virus expressing the green fluorescent protein. J Neurovirol 4: 438–444. doi: 10.3109/13550289809114543
[51]  Zhang Z, Selariu A, Warden C, Huang G, Huang Y, et al. (2010) Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog 6: e1000971. doi: 10.1371/journal.ppat.1000971
[52]  Gray WL, Zhou F, Noffke J, Tischer BK (2011) Cloning the simian varicella virus genome in E. coli as an infectious bacterial artificial chromosome. Arch Virol 156: 739–746. doi: 10.1007/s00705-010-0889-4
[53]  Mahalingam R, Clarke P, Wellish M, Dueland AN, Soike KF, et al. (1992) Prevalence and distribution of latent simian varicella virus DNA in monkey ganglia. Virology 188: 193–197. doi: 10.1016/0042-6822(92)90749-f
[54]  Bruce AG, Bakke AM, Thouless ME, Rose TM (2005) Development of a real-time qPCR assay for the detection of RV2 lineage-specific rhadinoviruses in macaques and baboons. Virol J 2: 2.
[55]  Verjans GM, Hintzen RQ, van Dun JM, Poot A, Milikan JC, et al. (2007) Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci U S A 104: 3496–3501. doi: 10.1073/pnas.0610847104
[56]  Ouwendijk WJ, Flowerdew SE, Wick D, Horn AK, Sinicina I, et al. (2012) Immunohistochemical detection of intra-neuronal VZV proteins in snap-frozen human ganglia is confounded by antibodies directed against blood group A1-associated antigens. J Neurovirol 18: 172–180. doi: 10.1007/s13365-012-0095-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133