[1] | Terry LJ, Vastag L, Rabinowitz JD, Shenk T (2012) Human kinome profiling identifies a requirement for AMP-activated protein kinase during human cytomegalovirus infection. Proc Natl Acad Sci U S A 109: 3071–3076. doi: 10.1073/pnas.1200494109
|
[2] | McArdle J, Moorman NJ, Munger J (2012) HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8: e1002502. doi: 10.1371/journal.ppat.1002502
|
[3] | Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2: e132. doi: 10.1371/journal.ppat.0020132
|
[4] | Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, et al. (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26: 1179–1186. doi: 10.1038/nbt.1500
|
[5] | Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7: e1002124. doi: 10.1371/journal.ppat.1002124
|
[6] | Chambers JW, Maguire TG, Alwine JC (2010) Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84: 1867–1873. doi: 10.1128/jvi.02123-09
|
[7] | Spencer CM, Schafer XL, Moorman NJ, Munger J (2011) Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J Virol 85: 5814–5824. doi: 10.1128/jvi.02630-10
|
[8] | Soupene E, Kuypers FA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med (Maywood) 233: 507–521. doi: 10.3181/0710-mr-287
|
[9] | Kazantzis M, Stahl A (2012) Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta 1821: 852–857. doi: 10.1016/j.bbalip.2011.09.010
|
[10] | Jakobsson A, Westerberg R, Jacobsson A (2006) Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res 45: 237–249. doi: 10.1016/j.plipres.2006.01.004
|
[11] | Dumortier J, Streblow DN, Moses AV, Jacobs JM, Kreklywich CN, et al. (2008) Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 82: 6524–6535. doi: 10.1128/jvi.00502-08
|
[12] | Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296: E1195–1209. doi: 10.1152/ajpendo.90958.2008
|
[13] | Tvrdik P, Asadi A, Kozak LP, Nedergaard J, Cannon B, et al. (1997) Cig30, a mouse member of a novel membrane protein gene family, is involved in the recruitment of brown adipose tissue. J Biol Chem 272: 31738–31746. doi: 10.1074/jbc.272.50.31738
|
[14] | Van Horn CG, Caviglia JM, Li LO, Wang S, Granger DA, et al. (2005) Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44: 1635–1642. doi: 10.1021/bi047721l
|
[15] | Kim JH, Lewin TM, Coleman RA (2001) Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones. J Biol Chem 276: 24667–24673. doi: 10.1074/jbc.m010793200
|
[16] | Igal RA, Wang P, Coleman RA (1997) Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA. Biochem J 324 (Pt 2) 529–534.
|
[17] | Nagase T, Takahashi T, Sasaki T, Nagumo A, Shimamura K, et al. (2009) Synthesis and biological evaluation of a novel 3-sulfonyl-8-azabicyclo[3.2.1]octane class of long chain fatty acid elongase 6 (ELOVL6) inhibitors. J Med Chem 52: 4111–4114. doi: 10.1021/jm900488k
|
[18] | Mizutani T, Ishikawa S, Nagase T, Takahashi H, Fujimura T, et al. (2009) Discovery of novel benzoxazinones as potent and orally active long chain fatty acid elongase 6 inhibitors. J Med Chem 52: 7289–7300. doi: 10.1021/jm900915x
|
[19] | Takahashi T, Nagase T, Sasaki T, Nagumo A, Shimamura K, et al. (2009) Synthesis and evaluation of a novel indoledione class of long chain fatty acid elongase 6 (ELOVL6) inhibitors. J Med Chem 52: 3142–3145. doi: 10.1021/jm900391x
|
[20] | Kamphorst JJ, Fan J, Lu W, White E, Rabinowitz JD (2011) Liquid chromatography-high resolution mass spectrometry analysis of fatty acid metabolism. Anal Chem 83: 9114–9122. doi: 10.1021/ac202220b
|
[21] | Sanchez V, Greis KD, Sztul E, Britt WJ (2000) Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J Virol 74: 975–986. doi: 10.1128/jvi.74.2.975-986.2000
|
[22] | Krzyzaniak MA, Mach M, Britt WJ (2009) HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 10: 1439–1457. doi: 10.1111/j.1600-0854.2009.00967.x
|
[23] | Das S, Vasanji A, Pellett PE (2007) Three-dimensional structure of the human cytomegalovirus cytoplasmic virion assembly complex includes a reoriented secretory apparatus. J Virol 81: 11861–11869. doi: 10.1128/jvi.01077-07
|
[24] | Krzyzaniak M, Mach M, Britt WJ (2007) The cytoplasmic tail of glycoprotein M (gpUL100) expresses trafficking signals required for human cytomegalovirus assembly and replication. J Virol 81: 10316–10328. doi: 10.1128/jvi.00375-07
|
[25] | Walther TC, Farese Jr RV (2012) Lipid Droplets and Cellular Lipid Metabolism. Annu Rev Biochem 81: 687–714. doi: 10.1146/annurev-biochem-061009-102430
|
[26] | Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, et al. (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5: e1000632. doi: 10.1371/journal.ppat.1000632
|
[27] | Ogawa K, Hishiki T, Shimizu Y, Funami K, Sugiyama K, et al. (2009) Hepatitis C virus utilizes lipid droplet for production of infectious virus. Proc Jpn Acad Ser B Phys Biol Sci 85: 217–228. doi: 10.2183/pjab.85.217
|
[28] | Yu Y, Maguire TG, Alwine JC (2012) Human cytomegalovirus infection induces adipocyte-like lipogenesis through activation of sterol regulatory element binding protein 1. J Virol 86: 2942–2949. doi: 10.1128/jvi.06467-11
|
[29] | Koopman R, Schaart G, Hesselink MK (2001) Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116: 63–68.
|
[30] | Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7: 168–181. doi: 10.1038/nrd2467
|
[31] | Cao J, Li JL, Li D, Tobin JF, Gimeno RE (2006) Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc Natl Acad Sci U S A 103: 19695–19700. doi: 10.1073/pnas.0609140103
|
[32] | Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, et al. (2004) Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 279: 54454–54462. doi: 10.1074/jbc.m410091200
|
[33] | Pei Z, Sun P, Huang P, Lal B, Laterra J, et al. (2009) Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity. Cancer Res 69: 9175–9182. doi: 10.1158/0008-5472.can-08-4689
|
[34] | Cobbs CS (2011) Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis. Herpesviridae 2: 10. doi: 10.1186/2042-4280-2-10
|
[35] | Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, et al. (2000) Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 60: 213–218.
|
[36] | Schneiter R, Brugger B, Amann CM, Prestwich GD, Epand RF, et al. (2004) Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes. Biochem J 381: 941–949. doi: 10.1042/bj20040320
|
[37] | Ho JK, Moser H, Kishimoto Y, Hamilton JA (1995) Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. J Clin Invest 96: 1455–1463. doi: 10.1172/jci118182
|
[38] | Gaigg B, Toulmay A, Schneiter R (2006) Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast. J Biol Chem 281: 34135–34145. doi: 10.1074/jbc.m603791200
|
[39] | Ibanez CE, Schrier R, Ghazal P, Wiley C, Nelson JA (1991) Human cytomegalovirus productively infects primary differentiated macrophages. J Virol 65: 6581–6588.
|
[40] | Lathey JL, Spector SA (1991) Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J Virol 65: 6371–6375.
|
[41] | Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H, et al. (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A 107: 7817–7822. doi: 10.1073/pnas.0912059107
|
[42] | Yu D, Smith GA, Enquist LW, Shenk T (2002) Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol 76: 2316–2328. doi: 10.1128/jvi.76.5.2316-2328.2002
|
[43] | Moorman NJ, Sharon-Friling R, Shenk T, Cristea IM (2010) A targeted spatial-temporal proteomics approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion maturation. Mol Cell Proteomics 9: 851–860. doi: 10.1074/mcp.m900485-mcp200
|
[44] | Schroer J, Shenk T (2008) Inhibition of cyclooxygenase activity blocks cell-to-cell spread of human cytomegalovirus. Proc Natl Acad Sci U S A 105: 19468–19473. doi: 10.1073/pnas.0810740105
|
[45] | Wiebusch L, Truss M, Hagemeier C (2004) Inhibition of human cytomegalovirus replication by small interfering RNAs. J Gen Virol 85: 179–184. doi: 10.1099/vir.0.19453-0
|
[46] | Zhang JH, Chung TD, Oldenburg KR (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen 4: 67–73. doi: 10.1177/108705719900400206
|
[47] | Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, et al. (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6: 569–575. doi: 10.1038/nmeth.1351
|
[48] | Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9: 465. doi: 10.1186/1471-2105-9-465
|
[49] | Womack A, Shenk T (2010) Human cytomegalovirus tegument protein pUL71 is required for efficient virion egress. MBio 1: e00282. doi: 10.1128/mbio.00282-10
|
[50] | Koyuncu OO, Dobner T (2009) Arginine methylation of human adenovirus type 5 L4 100-kilodalton protein is required for efficient virus production. J Virol 83: 4778–4790. doi: 10.1128/jvi.02493-08
|
[51] | Zhu H, Shen Y, Shenk T (1995) Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69: 7960–7970.
|
[52] | Nevels M, Paulus C, Shenk T (2004) Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A 101: 17234–17239. doi: 10.1073/pnas.0407933101
|
[53] | Nowak B, Sullivan C, Sarnow P, Thomas R, Bricout F, et al. (1984) Characterization of monoclonal antibodies and polyclonal immune sera directed against human cytomegalovirus virion proteins. Virology 132: 325–338. doi: 10.1016/0042-6822(84)90039-4
|
[54] | Silva MC, Yu QC, Enquist L, Shenk T (2003) Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J Virol 77: 10594–10605. doi: 10.1128/jvi.77.19.10594-10605.2003
|
[55] | Munger J, Yu D, Shenk T (2006) UL26-deficient human cytomegalovirus produces virions with hypophosphorylated pp28 tegument protein that is unstable within newly infected cells. J Virol 80: 3541–3548. doi: 10.1128/jvi.80.7.3541-3548.2006
|
[56] | Liu ST, Sharon-Friling R, Ivanova P, Milne SB, Myers DS, et al. (2011) Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc Natl Acad Sci U S A 108: 12869–12874. doi: 10.1073/pnas.1109796108
|
[57] | Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497–509.
|
[58] | Lu W, Clasquin MF, Melamud E, Amador-Noguez D, Caudy AA, et al. (2010) Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal Chem 82: 3212–3221. doi: 10.1021/ac902837x
|
[59] | Melamud E, Vastag L, Rabinowitz JD (2010) Metabolomic analysis and visualization engine for LC-MS data. Anal Chem 82: 9818–9826. doi: 10.1021/ac1021166
|
[60] | Bartz R, Seemann J, Zehmer JK, Serrero G, Chapman KD, et al. (2007) Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage. Mol Biol Cell 18: 3015–3025. doi: 10.1091/mbc.e06-09-0869
|
[61] | Britt WJ (1984) Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology 135: 369–378. doi: 10.1016/0042-6822(84)90193-4
|