全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a Protein Receptor for Botulinum Neurotoxin Serotype A (BoNT/A)

DOI: 10.1371/journal.ppat.1003369

Full-Text   Cite this paper   Add to My Lib

Abstract:

Botulinum neurotoxin serotype A (BoNT/A) causes transient muscle paralysis by entering motor nerve terminals (MNTs) where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206) to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs), making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs). Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

References

[1]  Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, et al. (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365: 160–163 10.1038/365160a0 [doi]. doi: 10.1038/365160a0
[2]  Montecucco C, Papini E, Schiavo G (1994) Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 346: 92–98. doi: 10.1016/0014-5793(94)00449-8
[3]  Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43: 526–532. doi: 10.1021/bi0356698
[4]  Verderio C, Grumelli C, Raiteri L, Coco S, Paluzzi S, et al. (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8: 142–153. doi: 10.1111/j.1600-0854.2006.00520.x
[5]  Popoff MR, Poulain B (2010) Bacterial Toxins and the Nervous System: Neurotoxins and Multipontetial Toxins Interacting with Neuronal Cells. Toxins 2: 683–737. doi: 10.3390/toxins2040683
[6]  Schulte-Mattler WJ (2008) Use of botulinum toxin A in adult neurological disorders: efficacy, tolerability and safety. CNS Drugs 22: 725–738. doi: 10.2165/00023210-200822090-00002
[7]  Apostolidis A, Fowler CJ (2008) The use of botulinum neurotoxin type A (BoNTA) in urology. J Neural Transm 115: 593–605. doi: 10.1007/s00702-007-0862-x
[8]  Montal M (2010) Botulinum Neurotoxin: A Marvel of Protein Design. Annual Review of Biochemistry 79: 591–617. doi: 10.1146/annurev.biochem.051908.125345
[9]  Burstein R, Dodick D, Silberstein S (2009) Migraine prophylaxis with botulinum toxin A is associated with perception of headache. Toxicon 54: 624–627 S0041-0101(09)00042-7 [pii];10.1016/j.toxicon.2009.01.009 [doi]. doi: 10.1016/j.toxicon.2009.01.009
[10]  Schieman C, Gelfand GJ, Grondin SC (2010) Hyperhidrosis: clinical presentation, evaluation and management. Expert Rev Dermatol 5: 31–44. doi: 10.1586/edm.09.61
[11]  Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307: 457–460. doi: 10.1038/307457a0
[12]  Montecucco C (1986) How do Tetanus and Botulinum toxins to neuronal membranes? Trends Biochem Sci 11: 315–317. doi: 10.1016/0968-0004(86)90282-3
[13]  Montecucco C, Rossetto O, Schiavo G (2004) Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 12: 442–446. doi: 10.1016/j.tim.2004.08.002
[14]  Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51: 631–643. doi: 10.1046/j.1365-2958.2003.03872.x
[15]  Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4: e1000129 10.1371/journal.ppat.1000129 [doi]. doi: 10.1371/journal.ppat.1000129
[16]  Yowler BC, Schengrund CL (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43: 9725–9731. doi: 10.1021/bi0494673
[17]  Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580: 2011–2014. doi: 10.1016/j.febslet.2006.02.074
[18]  Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, et al. (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312: 592–596. doi: 10.1126/science.1123654
[19]  Verderio C, Rossetto O, Grumelli C, Frassoni C, Montecucco C, et al. (2006) Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Rep 7: 995–999. doi: 10.1038/sj.embor.7400796
[20]  Dong M, Liu H, Tepp WH, Johnson EA, Janz R, et al. (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19: 5226–5237. doi: 10.1091/mbc.e08-07-0765
[21]  Baldwin MR, Barbieri JT (2009) Association of botulinum neurotoxins with synaptic vesicle protein complexes. Toxicon 54: 570–574. doi: 10.1016/j.toxicon.2009.01.040
[22]  Rummel A, Hafner K, Mahrhold S, Darashchonak N, Holt M, et al. (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110: 1942–1954. doi: 10.1111/j.1471-4159.2009.06298.x
[23]  Rummel A (2013) Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity. Curr Top Microbiol Immunol 364: 61–90 10.1007/978-3-642-33570-9_4 [doi]. doi: 10.1007/978-3-642-33570-9_4
[24]  Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48: 5631–5641. doi: 10.1021/bi9002138
[25]  Strotmeier J, Lee K, Volker AK, Mahrhold S, Zong Y, et al. (2010) Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J 431: 207–216 BJ20101042 [pii];10.1042/BJ20101042 [doi]. doi: 10.1042/bj20101042
[26]  Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum Neurotoxin D Uses Synaptic Vesicle Protein SV2 and Gangliosides as Receptors. PLoS Pathog 7: e1002008 10.1371/journal.ppat.1002008 [doi]. doi: 10.1371/journal.ppat.1002008
[27]  Yeh FL, Dong M, Yao J, Tepp WH, Lin G, et al. (2010) SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 6: e1001207 10.1371/journal.ppat.1001207 [doi]. doi: 10.1371/journal.ppat.1001207
[28]  Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5: 898–902. doi: 10.1038/2338
[29]  Lacy DB, Stevens RC (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J Mol Biol 291: 1091–1104 S0022-2836(99)92945-5 [pii];10.1006/jmbi.1999.2945 [doi]. doi: 10.1006/jmbi.1999.2945
[30]  Keegan K, Johnson DE, Williams LT, Hayman MJ (1991) Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci U S A 88: 1095–1099. doi: 10.1073/pnas.88.4.1095
[31]  Keegan K, Meyer S, Hayman MJ (1991) Structural and biosynthetic characterization of the fibroblast growth factor receptor 3 (FGFR-3) protein. Oncogene 6: 2229–2236.
[32]  Webster MK, Donoghue DJ (1996) Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 15: 520–527.
[33]  Webster MK, D'Avis PY, Robertson SC, Donoghue DJ (1996) Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell Biol 16: 4081–4087.
[34]  Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, et al. (2000) Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19: 3309–3320 10.1038/sj.onc.1203650 [doi]. doi: 10.1038/sj.onc.1203650
[35]  Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8: 235–253 nrd2792 [pii];10.1038/nrd2792 [doi]. doi: 10.1038/nrd2792
[36]  Johnson DE, Lu J, Chen H, Werner S, Williams LT (1991) The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol Cell Biol 11: 4627–4634.
[37]  Werner S, Duan DS, de VC, Peters KG, Johnson DE, Williams LT (1992) Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 12: 82–88.
[38]  Chellaiah AT, McEwen DG, Werner S, Xu J, Ornitz DM (1994) Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem 269: 11620–11627.
[39]  Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, et al. (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281: 15694–15700. doi: 10.1074/jbc.m601252200
[40]  Sturla LM, Merrick AE, Burchill SA (2003) FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells. Br J Cancer 89: 1276–1284 10.1038/sj.bjc.6601249 [doi];6601249 [pii].
[41]  Champion-Arnaud P, Ronsin C, Gilbert E, Gesnel MC, Houssaint E, et al. (1991) Multiple mRNAs code for proteins related to the BEK fibroblast growth factor receptor. Oncogene 6: 979–987.
[42]  Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, et al. (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271: 15292–15297. doi: 10.1074/jbc.271.25.15292
[43]  Rusnati M, Urbinati C, Tanghetti E, Dell'Era P, Lortat-Jacob H, et al. (2002) Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci U S A 99: 4367–4372. doi: 10.1073/pnas.072651899
[44]  Toledo MS, Suzuki E, Handa K, Hakomori S (2005) Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 280: 16227–16234. doi: 10.1074/jbc.m413713200
[45]  Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16: 139–149 S1359-6101(05)00002-X [pii];10.1016/j.cytogfr.2005.01.001 [doi]. doi: 10.1016/j.cytogfr.2005.01.001
[46]  West DC, Rees CG, Duchesne L, Patey SJ, Terry CJ, et al. (2005) Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 280: 13457–13464. doi: 10.1074/jbc.m410924200
[47]  Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, et al. (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281: 6120–6123. doi: 10.1074/jbc.c500457200
[48]  Hu Y, Guimond SE, Travers P, Cadman S, Hohenester E, et al. (2009) Novel mechanisms of fibroblast growth factor receptor 1 regulation by extracellular matrix protein anosmin-1. J Biol Chem 284: 29905–29920. doi: 10.1074/jbc.m109.049155
[49]  Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73: 2424–2428. doi: 10.1073/pnas.73.7.2424
[50]  Puffer EB, Lomneth RB, Sarkar HK, Singh BR (2001) Differential roles of developmentally distinct SNAP-25 isoforms in the neurotransmitter release process. Biochemistry 40: 9374–9378. doi: 10.1021/bi010362z
[51]  Olsen SK, Garbi M, Zampieri N, Eliseenkova AV, Ornitz DM, et al. (2003) Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 278: 34226–34236 10.1074/jbc.M303183200 [doi];M303183200 [pii]. doi: 10.1074/jbc.m303183200
[52]  Olsen SK, Ibrahimi OA, Raucci A, Zhang F, Eliseenkova AV, et al. (2004) Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc Natl Acad Sci U S A 101: 935–940. doi: 10.1073/pnas.0307287101
[53]  Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, et al. (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269: 10498–10503.
[54]  Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, et al. (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162: 1293–1303 10.1083/jcb.200305098 [doi];jcb.200305098 [pii]. doi: 10.1083/jcb.200305098
[55]  Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, et al. (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444: 1096–1100 nature05411 [pii];10.1038/nature05411 [doi]. doi: 10.1038/nature05411
[56]  Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444: 1092–1095. doi: 10.1038/nature05387
[57]  Li S, Christensen C, Kohler LB, Kiselyov VV, Berezin V, et al. (2009) Agonists of fibroblast growth factor receptor induce neurite outgrowth and survival of cerebellar granule neurons. Dev Neurobiol 69: 837–854 10.1002/dneu.20740 [doi]. doi: 10.1002/dneu.20740
[58]  Purkiss JR, Friis LM, Doward S, Quinn CP (2001) Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Neurotoxicology 22: 447–453. doi: 10.1016/s0161-813x(01)00042-0
[59]  Wiedlocha A, Sorensen V (2004) Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol 286: 45–79. doi: 10.1007/978-3-540-69494-6_3
[60]  Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160: 221–233.
[61]  Habermann E, Dreyer F, Bigalke H (1980) Tetanus toxin blocks the neuromuscular transmission in vitro like botulinum A toxin. Naunyn Schmiedebergs Arch Pharmacol 311: 33–40. doi: 10.1007/bf00500299
[62]  Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103: 535–544. doi: 10.1083/jcb.103.2.535
[63]  Restani L, Giribaldi F, Manich M, Bercsenyi K, Menendez G, et al. (2012) Botulinum neurotoxins a and e undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8: e1003087 10.1371/journal.ppat.1003087 [doi];PPATHOGENS-D-12-00849 [pii]. doi: 10.1371/journal.ppat.1003087
[64]  Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212: 16–21.
[65]  Duchesne L, Octeau V, Bearon RN, Beckett A, Prior IA, et al. (2012) Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparan sulfate. PLoS Biol 10: e1001361 10.1371/journal.pbio.1001361 [doi];PBIOLOGY-D-11-03009 [pii]. doi: 10.1371/journal.pbio.1001361
[66]  Yowler BC, Kensinger RD, Schengrund CL (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277: 32815–32819. doi: 10.1074/jbc.m205258200
[67]  Kitamura M, Takamiya K, Aizawa S, Furukawa K, Furukawa K (1999) Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441: 1–3 S1388-1981(99)00140-7 [pii]. doi: 10.1016/s1388-1981(99)00140-7
[68]  Elias M, Al-Saleem F, Ancharski DM, Singh A, Nasser Z, et al. (2011) Evidence that botulinum toxin receptors on epithelial cells and neuronal cells are not identical: implications for development of a non-neurotropic vaccine. J Pharmacol Exp Ther 336: 605–612 jpet.110.175018 [pii];10.1124/jpet.110.175018 [doi]. doi: 10.1124/jpet.110.175018
[69]  Wuechner C, Nordqvist AC, Winterpacht A, Zabel B, Schalling M (1996) Developmental expression of splicing variants of fibroblast growth factor receptor 3 (FGFR3) in mouse. Int J Dev Biol 40: 1185–1188.
[70]  Fon TK, Bookout AL, Ding X, Kurosu H, John GB, et al. (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24: 2050–2064 me.2010-0142 [pii];10.1210/me.2010-0142 [doi]. doi: 10.1210/me.2010-0142
[71]  Bajjalieh SM, Peterson K, Linial M, Scheller RH (1993) Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A 90: 2150–2154. doi: 10.1073/pnas.90.6.2150
[72]  Janz R, Sudhof TC (1999) SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94: 1279–1290. doi: 10.1016/s0306-4522(99)00370-x
[73]  Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16: 107–137. doi: 10.1016/j.cytogfr.2005.01.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133