[1] | Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, et al. (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86: 2708–2714.
|
[2] | Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, et al. (1995) Herpes-like sequences in HIV-infected and uninfected Kaposi's sarcoma patients. Science 268: 582–583. doi: 10.1126/science.7725108
|
[3] | Speck SH, Ganem D (2010) Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8: 100–115. doi: 10.1016/j.chom.2010.06.014
|
[4] | Chandran B (2010) Early events in Kaposi's sarcoma-associated herpesvirus infection of target cells. J Virol 84: 2188–2199. doi: 10.1128/jvi.01334-09
|
[5] | Guito J, Lukac DM (2012) KSHV Rta Promoter Specification and Viral Reactivation. Front Microbiol 3: 30. doi: 10.3389/fmicb.2012.00030
|
[6] | Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16: 633–647. doi: 10.1016/j.devcel.2009.03.010
|
[7] | Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66: 1631–1646. doi: 10.1007/s00018-009-8668-7
|
[8] | Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D (2002) The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 16: 1977–1989. doi: 10.1101/gad.996502
|
[9] | Liang Y, Ganem D (2003) Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A 100: 8490–8495. doi: 10.1073/pnas.1432843100
|
[10] | Bechtel JT, Liang Y, Hvidding J, Ganem D (2003) Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J Virol 77: 6474–6481. doi: 10.1128/jvi.77.11.6474-6481.2003
|
[11] | Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, et al. (2000) The restricted cellular host range of human herpesvirus 8. Aids 14: 1123–1133. doi: 10.1097/00002030-200006160-00009
|
[12] | Renne R, Blackbourn D, Whitby D, Levy J, Ganem D (1998) Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J Virol 72: 5182–5188.
|
[13] | Chen L, Lagunoff M (2005) Establishment and maintenance of Kaposi's sarcoma-associated herpesvirus latency in B cells. J Virol 79: 14383–14391. doi: 10.1128/jvi.79.22.14383-14391.2005
|
[14] | Rappocciolo G, Hensler HR, Jais M, Reinhart TA, Pegu A, et al. (2008) Human herpesvirus 8 infects and replicates in primary cultures of activated B lymphocytes through DC-SIGN. J Virol 82: 4793–4806. doi: 10.1128/jvi.01587-07
|
[15] | Hassman LM, Ellison TJ, Kedes DH (2011) KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest 121: 752–768. doi: 10.1172/jci44185
|
[16] | Myoung J, Ganem D (2011) Infection of primary human tonsillar lymphoid cells by KSHV reveals frequent but abortive infection of T cells. Virology 413: 1–11. doi: 10.1016/j.virol.2010.12.036
|
[17] | Myoung J, Ganem D (2011) Active lytic infection of human primary tonsillar B cells by KSHV and its noncytolytic control by activated CD4+ T cells. J Clin Invest 121: 1130–1140. doi: 10.1172/jci43755
|
[18] | Myoung J, Ganem D (2011) Infection of lymphoblastoid cell lines by Kaposi's sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol 85: 9767–9777. doi: 10.1128/jvi.05136-11
|
[19] | Maier S, Santak M, Mantik A, Grabusic K, Kremmer E, et al. (2005) A somatic knockout of CBF1 in a human B-cell line reveals that induction of CD21 and CCR7 by EBNA-2 is strictly CBF1 dependent and that downregulation of immunoglobulin M is partially CBF1 independent. J Virol 79: 8784–8792. doi: 10.1128/jvi.79.14.8784-8792.2005
|
[20] | Vieira J, O'Hearn PM (2004) Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology 325: 225–240. doi: 10.1016/j.virol.2004.03.049
|
[21] | Lallemand F, Desire N, Rozenbaum W, Nicolas JC, Marechal V (2000) Quantitative analysis of human herpesvirus 8 viral load using a real-time PCR assay. J Clin Microbiol 38: 1404–1408.
|
[22] | Renne R, Zhong W, Herndier B, McGrath M, Abbey N, et al. (1996) Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2: 342–346. doi: 10.1038/nm0396-342
|
[23] | Jenner RG, Boshoff C (2002) The molecular pathology of Kaposi's sarcoma-associated herpesvirus. Biochim Biophys Acta 1602: 1–22. doi: 10.1016/s0304-419x(01)00040-3
|
[24] | Ballestas ME, Chatis PA, Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641–644. doi: 10.1126/science.284.5414.641
|
[25] | Ballestas ME, Kaye KM (2001) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75: 3250–3258. doi: 10.1128/jvi.75.7.3250-3258.2001
|
[26] | Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, et al. (2000) Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am J Pathol 156: 743–749. doi: 10.1016/s0002-9440(10)64940-1
|
[27] | Fakhari FD, Dittmer DP (2002) Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J Virol 76: 6213–6223. doi: 10.1128/jvi.76.12.6213-6223.2002
|
[28] | Dittmer DP (2003) Transcription profile of Kaposi's sarcoma-associated herpesvirus in primary Kaposi's sarcoma lesions as determined by real-time PCR arrays. Cancer Res 63: 2010–2015.
|
[29] | Schulz TF, Chang Y (2007) KSHV gene expression and regulation; Ann Arvin GC-F, Edward Mocarski, Patrick S. Moore, Bernard Roizman, Richard Whitley, and Koichi Yamanishi, editor. Cambridge: Cambridge University Press
|
[30] | Bornkamm GW, Berens C, Kuklik-Roos C, Bechet JM, Laux G, et al. (2005) Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res 33: e137. doi: 10.1093/nar/gni137
|
[31] | Jackson BR, Noerenberg M, Whitehouse A (2012) The Kaposi's Sarcoma-Associated Herpesvirus ORF57 Protein and Its Multiple Roles in mRNA Biogenesis. Front Microbiol 3: 59. doi: 10.3389/fmicb.2012.00059
|
[32] | Rossetto CC, Susilarini NK, Pari GS (2011) Interaction of Kaposi's sarcoma-associated herpesvirus ORF59 with oriLyt is dependent on binding with K-Rta. J Virol 85: 3833–3841. doi: 10.1128/jvi.02361-10
|
[33] | Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, et al. (2012) The RBP-Jkappa binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog 8: e1002479. doi: 10.1371/journal.ppat.1002479
|
[34] | Lu J, Verma SC, Cai Q, Robertson ES (2011) The single RBP-Jkappa site within the LANA promoter is crucial for establishing Kaposi's sarcoma-associated herpesvirus latency during primary infection. J Virol 85: 6148–6161. doi: 10.1128/jvi.02608-10
|
[35] | Jin Y, He Z, Liang D, Zhang Q, Zhang H, et al. (2012) Carboxyl-Terminal Amino Acids 1052 to 1082 of the Latency-Associated Nuclear Antigen (LANA) Interact with RBP-Jkappa and Are Responsible for LANA-Mediated RTA Repression. J Virol 86: 4956–4969. doi: 10.1128/jvi.06788-11
|
[36] | Liang Y, Ganem D (2004) RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol 78: 6818–6826. doi: 10.1128/jvi.78.13.6818-6826.2004
|
[37] | Austgen K, Oakes SA, Ganem D (2011) Multiple defects, including premature apoptosis, prevent Kaposi's sarcoma-associated herpesvirus replication in murine cells. J Virol 86: 1877–1882. doi: 10.1128/jvi.06600-11
|
[38] | Lan K, Kuppers DA, Robertson ES (2005) Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jkappa, the major downstream effector of the Notch signaling pathway. J Virol 79: 3468–3478. doi: 10.1128/jvi.79.6.3468-3478.2005
|
[39] | Heinzelmann K, Scholz BA, Nowak A, Fossum E, Kremmer E, et al. (2010) Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4/K10) Is a Novel Interaction Partner of CSL/CBF1, the Major Downstream Effector of Notch Signaling. J Virol 84: 12255–12264. doi: 10.1128/jvi.01484-10
|
[40] | Xi X, Persson LM, O'Brien MW, Mohr I, Wilson AC (2012) Cooperation between viral interferon regulatory factor 4 and RTA to activate a subset of Kaposi's sarcoma-associated herpesvirus lytic promoters. J Virol 86: 1021–1033. doi: 10.1128/jvi.00694-11
|
[41] | Liu Y, Cao Y, Liang D, Gao Y, Xia T, et al. (2008) Kaposi's sarcoma-associated herpesvirus RTA activates the processivity factor ORF59 through interaction with RBP-Jkappa and a cis-acting RTA responsive element. Virology 380: 264–275. doi: 10.1016/j.virol.2008.08.011
|
[42] | Zhao B, Zou J, Wang H, Johannsen E, Peng CW, et al. (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 108: 14902–14907. doi: 10.1073/pnas.1108892108
|
[43] | Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59–74. doi: 10.1099/0022-1317-36-1-59
|
[44] | Ben-Bassat H, Goldblum N, Mitrani S, Goldblum T, Yoffey JM, et al. (1977) Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like” malignant lymphoma (line D.G.-75). Int J Cancer 19: 27–33. doi: 10.1002/ijc.2910190105
|
[45] | von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, et al. (2007) Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One 2: e459. doi: 10.1371/journal.pone.0000459
|
[46] | Uetz P, Dong YA, Zeretzke C, Atzler C, Baiker A, et al. (2006) Herpesviral protein networks and their interaction with the human proteome. Science 311: 239–242. doi: 10.1126/science.1116804
|
[47] | Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, et al. (2002) De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76: 2440–2448. doi: 10.1128/jvi.76.5.2440-2448.2002
|
[48] | Lu M, Suen J, Frias C, Pfeiffer R, Tsai MH, et al. (2004) Dissection of the Kaposi's sarcoma-associated herpesvirus gene expression program by using the viral DNA replication inhibitor cidofovir. J Virol 78: 13637–13652. doi: 10.1128/jvi.78.24.13637-13652.2004
|
[49] | Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18: 207–208. doi: 10.1093/bioinformatics/18.1.207
|
[50] | Ciccone DN, Morshead KB, Oettinger MA (2004) Chromatin immunoprecipitation in the analysis of large chromatin domains across murine antigen receptor loci. Methods Enzymol 376: 334–348. doi: 10.1016/s0076-6879(03)76022-4
|
[51] | Papin J, Vahrson W, Hines-Boykin R, Dittmer DP (2005) Real-time quantitative PCR analysis of viral transcription. Methods Mol Biol 292: 449–480. doi: 10.1385/1-59259-848-x:449
|
[52] | Wang Y, Yuan Y (2007) Essential role of RBP-Jkappa in activation of the K8 delayed-early promoter of Kaposi's sarcoma-associated herpesvirus by ORF50/RTA. Virology 359: 19–27. doi: 10.1016/j.virol.2006.09.032
|
[53] | Chang PJ, Shedd D, Miller G (2005) Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol 79: 8750–8763. doi: 10.1128/jvi.79.14.8750-8763.2005
|
[54] | Persson LM, Wilson AC (2010) Wide-scale use of Notch signaling factor CSL/RBP-Jkappa in RTA-mediated activation of Kaposi's sarcoma-associated herpesvirus lytic genes. J Virol 84: 1334–1347. doi: 10.1128/jvi.01301-09
|
[55] | Carroll KD, Bu W, Palmeri D, Spadavecchia S, Lynch SJ, et al. (2006) Kaposi's Sarcoma-associated herpesvirus lytic switch protein stimulates DNA binding of RBP-Jk/CSL to activate the Notch pathway. J Virol 80: 9697–9709. doi: 10.1128/jvi.00746-06
|
[56] | Ziegelbauer J, Grundhoff A, Ganem D (2006) Exploring the DNA binding interactions of the Kaposi's sarcoma-associated herpesvirus lytic switch protein by selective amplification of bound sequences in vitro. J Virol 80: 2958–2967. doi: 10.1128/jvi.80.6.2958-2967.2006
|
[57] | Chang PJ, Boonsiri J, Wang SS, Chen LY, Miller G (2010) Binding of RBP-Jkappa (CSL) protein to the promoter of the Kaposi's sarcoma-associated herpesvirus ORF47 (gL) gene is a critical but not sufficient determinant of transactivation by ORF50 protein. Virology 398: 38–48. doi: 10.1016/j.virol.2009.11.022
|
[58] | Chang H, Dittmer DP, Shin YC, Hong Y, Jung JU (2005) Role of Notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 79: 14371–14382. doi: 10.1128/jvi.79.22.14371-14382.2005
|
[59] | Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC (2005) Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79: 8493–8505. doi: 10.1128/jvi.79.13.8493-8505.2005
|
[60] | Lan K, Kuppers DA, Verma SC, Sharma N, Murakami M, et al. (2005) Induction of Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen by the lytic transactivator RTA: a novel mechanism for establishment of latency. J Virol 79: 7453–7465. doi: 10.1128/jvi.79.12.7453-7465.2005
|