全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antigenic Drift of the Pandemic 2009 A(H1N1) Influenza Virus in a Ferret Model

DOI: 10.1371/journal.ppat.1003354

Full-Text   Cite this paper   Add to My Lib

Abstract:

Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between na?ve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.

References

[1]  Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, et al. (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360: 2605–2615. doi: 10.1056/nejmoa0903810
[2]  WHO (2012) Recommended composition of influenza virus vaccines for use in the 2012–2013 northern hemisphere influenza season.
[3]  WHO (2012) Recommended composition of influenza virus vaccines for use in the 2013 southern hemisphere influenza season.
[4]  Kelly H, Peck HA, Laurie KL, Wu P, Nishiura H, et al. (2011) The age-specific cumulative incidence of infection with pandemic influenza H1N1 2009 was similar in various countires prior to vaccination. PLoS One 6: e21828. doi: 10.1371/journal.pone.0021828
[5]  Schmolke M, Garcia-Sastre A (2010) Evasion of innate and adaptive immune responses by influenza A virus. Cell Microbiol 12: 873–880. doi: 10.1111/j.1462-5822.2010.01475.x
[6]  Caton AJ, Brownlee GG, Yewdell JW, Gerhard W (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31: 417–427. doi: 10.1016/0092-8674(82)90135-0
[7]  Gerhard W, Yewdell J, Frankel ME, Webster R (1981) Antigenic structure of influenza virus haemagglutinin defined by hybridoma antibodies. Nature 290: 713–717. doi: 10.1038/290713a0
[8]  Yewdell JW, Gerhard W (1981) Antigenic characterization of viruses by monoclonal antibodies. Annu Rev Microbiol 35: 185–206. doi: 10.1146/annurev.mi.35.100181.001153
[9]  Both GW, Sleigh MJ, Cox NJ, Kendal AP (1983) Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. Journal of Virology 48: 52–60.
[10]  Skehel JJ, Stevens DJ, Daniels RS, Douglas AR, Knossow M, et al. (1984) A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A 81: 1779–1873. doi: 10.1073/pnas.81.6.1779
[11]  Martinez O, Tsibane T, Basler CF (2009) Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery. International Reviews of Immunology 28: 69–92. doi: 10.1080/08830180802593540
[12]  Haaheim LR, Tomasov CC, Barr IG, Hampson AW, Komadina N (2006) Identification of genetic diversity by cultivating influenza A(H3N2) virus in vitro in the presence of post-infection sera from small children. Vaccine 10: 44–46. doi: 10.1016/j.vaccine.2006.05.088
[13]  Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, et al. (2009) Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326: 734–736. doi: 10.1126/science.1178258
[14]  Hoelzer K, Murcia PR, Baillie GJ, Wood JL, Metzger SM, et al. (2010) Intrahost evolutionary dynamics of canine influenza virus in naive and partially immune dogs. Journal of Virology 84: 5329–5335. doi: 10.1128/jvi.02469-09
[15]  O'Donnell CD, Vogel L, Wright A, Das SR, Wrammert J, et al. (2012) Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. mBio 3: e00120–00112. doi: 10.1128/mbio.00120-12
[16]  Rudneva I, Ignatieva A, Timofeeva T, Shilov A, Kushch A, et al. (2012) Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Research 166: 61–67. doi: 10.1016/j.virusres.2012.03.003
[17]  Long J, Bushnell RV, Tobin JK, Pan K, Deem MW, et al. (2011) Evolution of H3N2 influenza virus in a guinea pig model. PLoS One 6: e20130. doi: 10.1371/journal.pone.0020130
[18]  Murcia PR, Baillie GJ, Daly J, Elton D, Jervis C, et al. (2010) Intra- and interhost evolutionary dynamics of equine influenza virus. Journal of Virology 84: 6943–6954. doi: 10.1128/jvi.00112-10
[19]  Wilson I, Cox N (1990) Structural basis of immune recognition of influenza virus hemagglutinin. Annual review of immunology 8: 737–771. doi: 10.1146/annurev.immunol.8.1.737
[20]  Wang M, Skehel J, Wiley D (1986) Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. Journal of Virology 57: 124–128.
[21]  Jayaraman A, Chandrasekaran A, Viswanathan K, Raman R, Fox JG, et al. (2012) Decoding the distribution of glycan receptors for human-adapted influenza A viruses in ferret respiratory tract. PLoS One 7: e27517. doi: 10.1371/journal.pone.0027517
[22]  Belser JA, Katz JM, Tumpey TM (2011) The ferret as a model organism to study influenza A virus infection. Disease Models & Mechanisms 4: 575–579.
[23]  O'Donnell CD, Subbarao K (2011) The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes and Infection 13: 502–515. doi: 10.1016/j.micinf.2011.01.014
[24]  Laurie KL, Carolan LA, Middleton D, Lowther S, Kelso A, et al. (2010) Multiple infections with seasonal influenza A virus induce cross-protective immunity against A(H1N1) pandemic influenza virus in a ferret model. Journal of Infectious Diseases 202: 1011–1020. doi: 10.1086/656188
[25]  Rockman S, Middleton DJ, Pearse MJ, Barr IG, Lowther S, et al. (2012) Control of pandemic (H1N1) 2009 influenza virus infection of ferret lungs by non-adjuvant-containing pandemic and seasonal vaccines. Vaccine 30: 3618–3623. doi: 10.1016/j.vaccine.2012.03.043
[26]  World Health Organization GIP (2002) WHO Manual on Animal Influenza Diagnosis and Surveillance. WHO/CDS/CSR/NCS/2002.5 Rev.1.
[27]  Winter G, Fields S, Brownlee GG (1981) Nucleotide sequence of the haemagglutinin gene of a human influenza virus H1 subtype. Nature 292: 72–75. doi: 10.1038/292072a0
[28]  Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, et al. (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature Biotechnology 26: 107–113. doi: 10.1038/nbt1375
[29]  Chen X, Wang W, Zhou H, Suguitan AL Jr, Shambaugh C, et al. (2010) Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. Journal of Virology 84: 44–51. doi: 10.1128/jvi.02106-09
[30]  Glaser L, Stevens J, Zamarin D, Wilson IA, García-Sastre A, et al. (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. Journal of Virology 79: 11533–11536. doi: 10.1128/jvi.79.17.11533-11536.2005
[31]  Igarashi M, Ito K, Yoshida R, Tomabechi D, Kida H, et al. (2010) Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS One 5: e8553. doi: 10.1371/journal.pone.0008553
[32]  Coleman PM (1998) Textbook of Influenza; Nicholson KG, Webster RG, Hay AJ, editors. UK: Blackwell Science.
[33]  Hurt AC, Nor'e SS, McCaw JM, Fryer HR, Mosse J, et al. (2010) Assessing the viral fitness of oseltamivir-resistant influenza viruses in ferrets, using a competitive-mixtures model. Journal of Virology 84: 9427–9438. doi: 10.1128/jvi.00373-10
[34]  Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Current Opinion in Virology 2: 160–167. doi: 10.1016/j.coviro.2012.03.003
[35]  Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, et al. (2010) Glycans as receptors for influenza pathogenesis. Glycoconjugate Journal 27: 561–570. doi: 10.1007/s10719-010-9303-4
[36]  Matrosovich M, Matrosovich T, Carr J, Roberts NA, Klenk H-D (2003) Overexpression of the a-2,6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors. Journal of Virology 77: 8418–8425. doi: 10.1128/jvi.77.15.8418-8425.2003
[37]  Braakman I, Hoover-Litty H, Wagner KR, Helenius A (1991) Folding of influenza hemagglutinin in the endoplasmic reticulum. Journal of Cell Biology 114: 401–411. doi: 10.1083/jcb.114.3.401
[38]  Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, et al. (2009) Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci U S A 106: 9808–9814. doi: 10.1073/pnas.0903815106
[39]  Lin YP, Gregory V, Collins P, Kloess J, Wharto S, et al. (2010) Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic siteL a role in virus attachment? Journal of Virology 84: 6769–6781. doi: 10.1128/jvi.00458-10
[40]  Strengell M, Ikonen N, Ziegler T, Julkunen I (2011) Minor Changes in the Hemagglutinin of Influenza A(H1N1)2009 Virus Alter Its Antigenic Properties. PLoS One 6: e25848. doi: 10.1371/journal.pone.0025848
[41]  Ramos I, Bernal-Rubio D, Durham N, Belicha-Villanueva A, Lowen AC, et al. (2011) Effects of receptor binding specificity of avian influenza virus on the human innate immune response. Journal of Virology 85: 4421–4431. doi: 10.1128/jvi.02356-10
[42]  Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, et al. (2005) Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Research 114: 15–22. doi: 10.1016/j.virusres.2005.05.005
[43]  Kumari K, Gulati S, Smith DF, Gulati U, Cummings RD, et al. (2007) Receptor binding specificity of recent human H3N2 influenza viruses. Virology Journal 4: 42. doi: 10.1186/1743-422x-4-42
[44]  Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, et al. (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals difference receptor specificities. Journal of Molecular Biology 355: 1143–1155. doi: 10.1016/j.jmb.2005.11.002
[45]  Viswanathan K, Koh X, Chandrasekaran A, Pappas C, Raman R, et al. (2010) Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin. PLoS One 5: e13768. doi: 10.1371/journal.pone.0013768
[46]  Barbey-Martin C, Gigant B, Bizebard T, Calder LJ, Wharton SA, et al. (2002) An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294: 70–74. doi: 10.1006/viro.2001.1320
[47]  Fleury D, Wharton SA, Skehel JJ, Knossow M, Bizebard T (1998) Antigen distortion allows influenza virus to escape neutralization. Nature Structural Biology 5: 119–123. doi: 10.1038/nsb0298-119
[48]  Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE Jr, et al. (2010) Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328: 357–360. doi: 10.1126/science.1186430
[49]  Pollard AJ, Hill AVS (2011) Antibody Repertoire: Embracing Diversity. Science Translational Medicine 3: 93ps32. doi: 10.1126/scitranslmed.3002694
[50]  Lin YP, Xiong X, Wharton SA, Martin SR, Coombs PJ, et al. (2012) Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A 109: 21474–21479. doi: 10.1073/pnas.1218841110
[51]  Yang H, Carney P, Stevens J (2010) Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. Plos Currents 2: RRN1152. doi: 10.1371/currents.rrn1152
[52]  Oh DY, Barr IG, Mosse JA, Laurie KL (2008) MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J Clin Microbiol 46: 2189–2194. doi: 10.1128/jcm.00398-08
[53]  Murcia PR, Hughes J, Battista P, Lloyd L, Baillie GJ, et al. (2012) Evolution of an Eurasian avian-like influenza virus in na?ve and vaccinated pigs. PLoS Pathogens 8: e1002730. doi: 10.1371/journal.ppat.1002730
[54]  WHO (2009) CDC protocol of realtime RTPCR for swine influenza A(H1N1)
[55]  Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology 146: 2275–2289. doi: 10.1007/s007050170002
[56]  WHO (2009) Sequencing primers and protocol
[57]  Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97: 6108–6113. doi: 10.1073/pnas.100133697
[58]  Deng YM, Caldwell N, Barr IG (2011) Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing. PLoS One 6: e23400. doi: 10.1371/journal.pone.0023400
[59]  Gruber JD, Colligan PB, Wolford JK (2002) Estimation of single nucleotide polymorphism allele frequency in DNA pools by using Pyrosequencing. Human Genetics 110: 395–401. doi: 10.1007/s00439-002-0722-6
[60]  Halvas EK, Aldrovandi GM, Balfe P, Beck IA, Boltz VF, et al. (2006) Blinded, multicenter comparison of methods to detect a drug-resistant mutant of human immunodeficiency virus type 1 at low frequency. Journal of Clincal Microbiology 44: 2612–2614. doi: 10.1128/jcm.00449-06
[61]  Lavebratt C, Sengul S (2006) Single nucleotide polymorphism (SNP) allele frequency estimation in DNA pools using pyrosequencing. Nature Protocols 1: 2573–2582. doi: 10.1038/nprot.2006.442
[62]  CDC (1982) Concepts and Procedures for Laboratory-Based Influenza Surveillance. Kendal A PM, Skehel J, editor. Atlanta, GA: US Department of Health and Human Services, CDC. 8 p.
[63]  McVernon J, Laurie KL, Nolan T, Owen R, Irving D, et al. (2010) Seroprevalence of 2009 pandemic influenza A(H1N1) virus in Australian blood donors, October–December 2009. Eurosurveillance 15: 19678.
[64]  Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298. doi: 10.1093/bib/bbn013
[65]  Monson R R (1990) Occupational Epidemiology. Boca Raton, FL: CRC Press.
[66]  Xu R, McBride R, Nycholat CM, Paulson JC, Wilson IAW (2012) Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. Journal of Virology 86: 982–990. doi: 10.1128/jvi.06322-11
[67]  Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 47: 393–402. doi: 10.1002/prot.10104
[68]  Krieger E, Joo K, Lee J, Lee J, Raman S, et al. (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 77: 114–122. doi: 10.1002/prot.22570
[69]  Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 24: 1999–2012. doi: 10.1002/jcc.10349
[70]  York DM, Wlodawer A, Pedersen LG, Darden TA (1994) Atomic-level accuracy in simulations of large protein crystals. Proc Natl Acad Sci U S A 91: 8715–8718. doi: 10.1073/pnas.91.18.8715

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133