[1] | van Oers MM, Vlak JM (2007) Baculovirus genomics. Curr Drug Targets 8: 1051–1068. doi: 10.2174/138945007782151333
|
[2] | Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz I, Lobo De Souza M (2006) Baculoviruses - Re-emerging biopesticides. Biotechnol Adv 24: 143–160. doi: 10.1016/j.biotechadv.2005.09.001
|
[3] | Federici B (1997) Baculovirus pathogenesis. In: Miller LK, editors. The Baculoviruses. New York: Plenum Press. pp 33–59.
|
[4] | Rohrmann GF (2011) Host resistance and susceptibility. In: Baculovirus Molecular Biology. Bethesda (MD): National Center for Biotechnology Information (US). pp 95–100.
|
[5] | Tsakas S, Marmaras VJ (2010) Insect immunity and its signalling: an overview. Invertebrate Survival Journal 7: 228–238.
|
[6] | Vodovar N, Saleh MC (2012) Of Insects and Viruses: The Role of Small RNAs in Insect Defence. Advances in Insect Physiology 42: 1–36. doi: 10.1016/b978-0-12-387680-5.00001-x
|
[7] | Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annual Review of Immunology 25: 697–743. doi: 10.1146/annurev.immunol.25.022106.141615
|
[8] | Bronkhorst AW, Van Cleefa KWR, Vodovar N, Ikbal AI, Blanc H, et al. (2012) The DNA virus invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 109: 3604–3613. doi: 10.1073/pnas.1207213109
|
[9] | Jayachandran B, Hussain M, Asgari S (2012) RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J Virol 86: 13729–13734. doi: 10.1128/jvi.02041-12
|
[10] | Popham HJR, Shelby KS, Brandt SL, Coudron TA (2004) Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. J GEN VIROL 85: 2255–2261. doi: 10.1099/vir.0.79965-0
|
[11] | Cerenius L, Lee BL, S?derh?ll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology 29: 263–271. doi: 10.1016/j.it.2008.02.009
|
[12] | Trudeau D, Washburn JO, Volkman LE (2001) Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. J Virol 75: 996–1003. doi: 10.1128/jvi.75.2.996-1003.2001
|
[13] | Hirai M, Terenius O, Li W, Faye I (2004) Baculovirus and dsRNA induce hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Mol Biol 13: 399–405. doi: 10.1111/j.0962-1075.2004.00497.x
|
[14] | Terenius O, Popham HJR, Shelby KS (2009) Bacterial, but not baculoviral infections stimulate hemolin expression in noctuid moths. Dev Comp Immunol 33: 1176–1185. doi: 10.1016/j.dci.2009.06.009
|
[15] | Salem TZ, Zhang F, Xie Y, Thiem SM (2011) Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. Virology 412: 167–178. doi: 10.1016/j.virol.2011.01.006
|
[16] | Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, et al. (2012) Analysis of genes expression of Spodoptera exigua larvae upon AcMNPV infection. PLoS ONE 7: e42462. doi: 10.1371/journal.pone.0042462
|
[17] | Wang Q, Liu Y, He HJ, Zhao XF, Wang JX (2010) Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol 11: 9. doi: 10.1186/1471-2172-11-9
|
[18] | Breitenbach JE, Shelby KS, Popham HJR (2011) Baculovirus induced transcripts in hemocytes from the larvae of Heliothis virescens. Viruses 3: 2047–2064. doi: 10.3390/v3112047
|
[19] | Popham HJR, Grasela JJ, Goodman CL, McIntosh AH (2010) Baculovirus infection influences host protein expression in two established insect cell lines. J Insect Physiol 56: 1237–1245. doi: 10.1016/j.jinsphys.2010.03.024
|
[20] | Nobiron I, O'Reilly DR, Olszewski JA (2003) Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: A global analysis of host gene regulation during infection, using a differential display approach. J GEN VIROL 84: 3029–3039. doi: 10.1099/vir.0.19270-0
|
[21] | Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336: 1268–1273. doi: 10.1126/science.1223490
|
[22] | Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biology 2: 120075. doi: 10.1098/rsob.120075
|
[23] | Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: e1000423. doi: 10.1371/journal.ppat.1000423
|
[24] | Freitak D, Wheat CW, Heckel DG, Vogel H (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biology 5: 56. doi: 10.1186/1741-7007-5-56
|
[25] | Dillon RJ, Dillon VM (2004) The Gut Bacteria of Insects: Nonpathogenic Interactions. 49: : 71–92.
|
[26] | Ryu JH, Kim SH, Lee HY, Jin YB, Nam YD, et al. (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319: 777–782. doi: 10.1126/science.1149357
|
[27] | Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, et al. (2012) Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 7: e33188. doi: 10.1371/journal.pone.0033188
|
[28] | Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferré J, et al. (2010) Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ Microbiol 12: 2730–2737. doi: 10.1111/j.1462-2920.2010.02241.x
|
[29] | Broderick NA, Robinson CJ, McMahon MD, Holt J, Handelsman J, et al. (2009) Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biology 7: 11. doi: 10.1186/1741-7007-7-11
|
[30] | Iweala OI, Nagler CR (2006) Immune privilege in the gut: The establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol Rev 213: 82–100. doi: 10.1111/j.1600-065x.2006.00431.x
|
[31] | Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: Friends or foes? Nat Rev Immunol 10: 735–744. doi: 10.1038/nri2850
|
[32] | Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249–252. doi: 10.1126/science.1211057
|
[33] | Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, et al. (2011) Successful transmission of a retrovirus depends on the commensal microbiota. Science 334: 245–249. doi: 10.1126/science.1210718
|
[34] | Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, et al. (2011) Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc Natl Acad Sci U S A 108: 5354–5359. doi: 10.1073/pnas.1019378108
|
[35] | Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, et al. (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal salmonella diarrhea. PLoS Pathog 6: e01097. doi: 10.1371/journal.ppat.1001097
|
[36] | Jarosz J (1979) Gut flora of Galleria mellonella suppressing ingested bacteria. J Invertebr Pathol 34: 192–198. doi: 10.1016/0022-2011(79)90101-0
|
[37] | Dillon RJ, Charnley AK (1986) Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria: Evidence for an antifungal toxin. J Invertebr Pathol 47: 350–360. doi: 10.1016/0022-2011(86)90106-0
|
[38] | Takatsuka J, Kunimi Y (2000) Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J Invertebr Pathol 76: 222–226. doi: 10.1006/jipa.2000.4973
|
[39] | Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103: 15196–15199. doi: 10.1073/pnas.0604865103
|
[40] | Hoover K, Yee JL, Schultz CM, Rocke DM, Hammock BD, et al. (1998) Effects of plant identity and chemical constituents on the efficacy of a baculovirus against Heliothis virescens. Journal of Chemical Ecology 24: 221–252. doi: 10.1023/a:1022576207506
|
[41] | Raymond B, Vanbergen A, Pearce I, Hartley SE, Cory JS, et al. (2002) Host plant species can influence the fitness of herbivore pathogens: The winter moth and its nucleopolyhedrovirus. Oecologia 131: 533–541. doi: 10.1007/s00442-002-0926-4
|
[42] | Farrar J, Ridgway RL (2000) Host plant effects on the activity of selected nuclear polyhedrosis viruses against the corn earworm and beet armyworm (Lepidoptera: Noctuidae). Environmental Entomology 29: 108–115. doi: 10.1603/0046-225x-29.1.108
|
[43] | Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ (2011) Nutritional immunology: A multi-dimensional approach. PLoS Pathog 7: e1002223. doi: 10.1371/journal.ppat.1002223
|
[44] | Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ (2011) Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol 57: 840–850. doi: 10.1016/j.jinsphys.2011.03.014
|
[45] | Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology 21: 5124–5137. doi: 10.1111/j.1365-294x.2012.05752.x
|
[46] | Jakubowska AK, Caccia S, Gordon KH, Ferré J, Herrero S (2010) Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J Virol 84: 2547–2555. doi: 10.1128/jvi.01860-09
|
[47] | Smits PH, Vlak JM (1988) Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae. J Invertebr Pathol 51: 107–114. doi: 10.1016/0022-2011(88)90066-3
|
[48] | Ooi BG, Miller LK (1988) Regulation of Host RNA Levels during Baculovirus Infection. Virology 166: 515–523. doi: 10.1016/0042-6822(88)90522-3
|
[49] | Nguyen Q, Palfreyman RW, Chan LCL, Reid S, Nielsen LK (2012) Transcriptome sequencing of and microarray development for a Helicoverpa zea cell line to investigate in vitro insect cell-baculovirus interactions. PLoS ONE 7: e36324. doi: 10.1371/journal.pone.0036324
|
[50] | Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. Advances in Experiemntal Medicine andBiology 708: 181–204. doi: 10.1007/978-1-4419-8059-5_10
|
[51] | Kingsolver MB, Hardy RW (2012) Making connections in insect innate immunity. Proc Natl Acad Sci U S A 109: 18639–18640. doi: 10.1073/pnas.1216736109
|
[52] | Moreno-Habel DA, Biglang-awa IM, Dulce A, Luu DD, Garcia P, et al. (2012) Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J Invertebr Pathol 110: 92–101. doi: 10.1016/j.jip.2012.02.007
|
[53] | Elena SF, Carrera J, Rodrigo G (2011) A systems biology approach to the evolution of plant-virus interactions. Curr Opin Plant Biol 14: 372–377. doi: 10.1016/j.pbi.2011.03.013
|
[54] | Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK (2006) Host-virus interaction: A new role for microRNAs. Retrovirology 3: 68. doi: 10.1186/1742-4690-3-68
|
[55] | Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098. doi: 10.1371/journal.ppat.1000098
|
[56] | Grassmann R, Jeang KT (2008) The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta Gene Regul Mech 1779: 706–711. doi: 10.1016/j.bbagrm.2008.05.005
|
[57] | Singh J, Singh CP, Bhavani A, Nagaraju J (2010) Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology 407: 120–128. doi: 10.1016/j.virol.2010.07.033
|
[58] | Singh CP, Singh J, Nagaraju J (2012) A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor ran. J Virol 86: 7867–7879. doi: 10.1128/jvi.00064-12
|
[59] | Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5: e1000582. doi: 10.1371/journal.ppat.1000582
|
[60] | Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, et al. (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2: e00065–00011. doi: 10.1128/mbio.00065-11
|
[61] | Galloway CS, Wang P, Winstanley D, Jones IM (2005) Comparison of the bacterial enhancin-like proteins from Yersinia and Bacillus spp. with a baculovirus enhancin. J Invertebr Pathol 90: 134–137. doi: 10.1016/j.jip.2005.06.008
|
[62] | Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: Properties and potential. Crit Rev Biotechnol 27: 21–28. doi: 10.1080/07388550601168223
|
[63] | Hawtin RE, Arnold K, Ayres MD, De Zanotto APM, Howard SC, et al. (1995) Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212: 673–685. doi: 10.1006/viro.1995.1525
|
[64] | Qin X, Singh KV, Weinstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183: 3372–3382. doi: 10.1128/jb.183.11.3372-3382.2001
|
[65] | Shin YP, Kyoung MK, Joon HL, Sook JS, In HL (2007) Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infection and Immunity 75: 1861–1869. doi: 10.1128/iai.01473-06
|
[66] | Wilks J, Golovkina T (2012) Influence of microbiota on viral infections. PLoS Pathog 8: e1002681. doi: 10.1371/journal.ppat.1002681
|
[67] | Ammann CG, Messer RJ, Varvel K, DeBuysscher BL, LaCasse RA, et al. (2009) Effects of acute and chronic murine norovirus infections on immune responses and recovery from friend retrovirus infection. J Virol 83: 13037–13041. doi: 10.1128/jvi.01445-09
|
[68] | Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454–459. doi: 10.1038/nature10356
|
[69] | Graham RI, Grzywacz D, Mushobozi WL, Wilson K (2012) Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol Lett 15: 993–1000. doi: 10.1111/j.1461-0248.2012.01820.x
|
[70] | Cabodevilla O, Iba?ez I, Simón O, Murillo R, Caballero P, et al. (2011) Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus. Biol Control 56: 184–192. doi: 10.1016/j.biocontrol.2010.10.007
|
[71] | Mu?oz D, Murillo R, Krell PJ, Vlak JM, Caballero P (1999) Four genotypic variants of a Spodoptera exigua nucleopolyhedrovirus (Se-SP2) are distinguishable by a hypervariable genomic region. Virus Res 59: 61–74. doi: 10.1016/s0168-1702(98)00125-7
|
[72] | Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586–605. doi: 10.1006/viro.1994.1380
|
[73] | Vlak JM (1979) The proteins of nonoccluded Autographa californica nuclear polyhedrosis virus produced in an established cell line of Spodoptera frugiperda. J Invertebr Pathol 34: 110–118. doi: 10.1016/0022-2011(79)90089-2
|
[74] | Pascual L, Jakubowska AK, Blanca JM, Ca?izares J, Ferré J, et al. (2012) The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochem Mol Biol 42: 557–570. doi: 10.1016/j.ibmb.2012.04.003
|
[75] | Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, et al. (2010) Babelomics: An integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38: W210–W213. doi: 10.1093/nar/gkq388
|