全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Increase in Gut Microbiota after Immune Suppression in Baculovirus-infected Larvae

DOI: 10.1371/journal.ppat.1003379

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spodoptera exigua microarray was used to determine genes differentially expressed in S. exigua cells challenged with the species-specific baculovirus SeMNPV as well as with a generalist baculovirus, AcMNPV. Microarray results revealed that, in contrast to the host transcriptional shut-off that is expected during baculovirus infection, S. exigua cells showed a balanced number of up- and down-regulated genes during the first 36 hours following the infection. Many immune-related genes, including pattern recognition proteins, genes involved in signalling and immune pathways as well as immune effectors and genes coding for proteins involved in the melanization cascade were found to be down-regulated after baculovirus infection. The down-regulation of immune-related genes was confirmed in the larval gut. The expression of immune-related genes in the gut is known to affect the status of gut microorganisms, many of which are responsible for growth and development functions. We therefore asked whether the down-regulation that occurs after baculovirus infection affects the amount of gut microbiota. An increase in the gut bacterial load was observed and we hypothesize this to be as a consequence of viral infection. Subsequent experiments on virus performance in the presence and absence of gut microbiota revealed that gut bacteria enhanced baculovirus virulence, pathogenicity and dispersion. We discuss the host immune response processes and pathways affected by baculoviruses, as well as the role of gut microbiota in viral infection.

References

[1]  van Oers MM, Vlak JM (2007) Baculovirus genomics. Curr Drug Targets 8: 1051–1068. doi: 10.2174/138945007782151333
[2]  Szewczyk B, Hoyos-Carvajal L, Paluszek M, Skrzecz I, Lobo De Souza M (2006) Baculoviruses - Re-emerging biopesticides. Biotechnol Adv 24: 143–160. doi: 10.1016/j.biotechadv.2005.09.001
[3]  Federici B (1997) Baculovirus pathogenesis. In: Miller LK, editors. The Baculoviruses. New York: Plenum Press. pp 33–59.
[4]  Rohrmann GF (2011) Host resistance and susceptibility. In: Baculovirus Molecular Biology. Bethesda (MD): National Center for Biotechnology Information (US). pp 95–100.
[5]  Tsakas S, Marmaras VJ (2010) Insect immunity and its signalling: an overview. Invertebrate Survival Journal 7: 228–238.
[6]  Vodovar N, Saleh MC (2012) Of Insects and Viruses: The Role of Small RNAs in Insect Defence. Advances in Insect Physiology 42: 1–36. doi: 10.1016/b978-0-12-387680-5.00001-x
[7]  Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annual Review of Immunology 25: 697–743. doi: 10.1146/annurev.immunol.25.022106.141615
[8]  Bronkhorst AW, Van Cleefa KWR, Vodovar N, Ikbal AI, Blanc H, et al. (2012) The DNA virus invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc Natl Acad Sci U S A 109: 3604–3613. doi: 10.1073/pnas.1207213109
[9]  Jayachandran B, Hussain M, Asgari S (2012) RNA interference as a cellular defense mechanism against the DNA virus baculovirus. J Virol 86: 13729–13734. doi: 10.1128/jvi.02041-12
[10]  Popham HJR, Shelby KS, Brandt SL, Coudron TA (2004) Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. J GEN VIROL 85: 2255–2261. doi: 10.1099/vir.0.79965-0
[11]  Cerenius L, Lee BL, S?derh?ll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology 29: 263–271. doi: 10.1016/j.it.2008.02.009
[12]  Trudeau D, Washburn JO, Volkman LE (2001) Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. J Virol 75: 996–1003. doi: 10.1128/jvi.75.2.996-1003.2001
[13]  Hirai M, Terenius O, Li W, Faye I (2004) Baculovirus and dsRNA induce hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Mol Biol 13: 399–405. doi: 10.1111/j.0962-1075.2004.00497.x
[14]  Terenius O, Popham HJR, Shelby KS (2009) Bacterial, but not baculoviral infections stimulate hemolin expression in noctuid moths. Dev Comp Immunol 33: 1176–1185. doi: 10.1016/j.dci.2009.06.009
[15]  Salem TZ, Zhang F, Xie Y, Thiem SM (2011) Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. Virology 412: 167–178. doi: 10.1016/j.virol.2011.01.006
[16]  Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, et al. (2012) Analysis of genes expression of Spodoptera exigua larvae upon AcMNPV infection. PLoS ONE 7: e42462. doi: 10.1371/journal.pone.0042462
[17]  Wang Q, Liu Y, He HJ, Zhao XF, Wang JX (2010) Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol 11: 9. doi: 10.1186/1471-2172-11-9
[18]  Breitenbach JE, Shelby KS, Popham HJR (2011) Baculovirus induced transcripts in hemocytes from the larvae of Heliothis virescens. Viruses 3: 2047–2064. doi: 10.3390/v3112047
[19]  Popham HJR, Grasela JJ, Goodman CL, McIntosh AH (2010) Baculovirus infection influences host protein expression in two established insect cell lines. J Insect Physiol 56: 1237–1245. doi: 10.1016/j.jinsphys.2010.03.024
[20]  Nobiron I, O'Reilly DR, Olszewski JA (2003) Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: A global analysis of host gene regulation during infection, using a differential display approach. J GEN VIROL 84: 3029–3039. doi: 10.1099/vir.0.19270-0
[21]  Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336: 1268–1273. doi: 10.1126/science.1223490
[22]  Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biology 2: 120075. doi: 10.1098/rsob.120075
[23]  Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5: e1000423. doi: 10.1371/journal.ppat.1000423
[24]  Freitak D, Wheat CW, Heckel DG, Vogel H (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biology 5: 56. doi: 10.1186/1741-7007-5-56
[25]  Dillon RJ, Dillon VM (2004) The Gut Bacteria of Insects: Nonpathogenic Interactions. 49: : 71–92.
[26]  Ryu JH, Kim SH, Lee HY, Jin YB, Nam YD, et al. (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319: 777–782. doi: 10.1126/science.1149357
[27]  Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, et al. (2012) Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 7: e33188. doi: 10.1371/journal.pone.0033188
[28]  Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferré J, et al. (2010) Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ Microbiol 12: 2730–2737. doi: 10.1111/j.1462-2920.2010.02241.x
[29]  Broderick NA, Robinson CJ, McMahon MD, Holt J, Handelsman J, et al. (2009) Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biology 7: 11. doi: 10.1186/1741-7007-7-11
[30]  Iweala OI, Nagler CR (2006) Immune privilege in the gut: The establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol Rev 213: 82–100. doi: 10.1111/j.1600-065x.2006.00431.x
[31]  Cerf-Bensussan N, Gaboriau-Routhiau V (2010) The immune system and the gut microbiota: Friends or foes? Nat Rev Immunol 10: 735–744. doi: 10.1038/nri2850
[32]  Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, et al. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249–252. doi: 10.1126/science.1211057
[33]  Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, et al. (2011) Successful transmission of a retrovirus depends on the commensal microbiota. Science 334: 245–249. doi: 10.1126/science.1210718
[34]  Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, et al. (2011) Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc Natl Acad Sci U S A 108: 5354–5359. doi: 10.1073/pnas.1019378108
[35]  Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, et al. (2010) The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal salmonella diarrhea. PLoS Pathog 6: e01097. doi: 10.1371/journal.ppat.1001097
[36]  Jarosz J (1979) Gut flora of Galleria mellonella suppressing ingested bacteria. J Invertebr Pathol 34: 192–198. doi: 10.1016/0022-2011(79)90101-0
[37]  Dillon RJ, Charnley AK (1986) Inhibition of Metarhizium anisopliae by the gut bacterial flora of the desert locust, Schistocerca gregaria: Evidence for an antifungal toxin. J Invertebr Pathol 47: 350–360. doi: 10.1016/0022-2011(86)90106-0
[38]  Takatsuka J, Kunimi Y (2000) Intestinal bacteria affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J Invertebr Pathol 76: 222–226. doi: 10.1006/jipa.2000.4973
[39]  Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci U S A 103: 15196–15199. doi: 10.1073/pnas.0604865103
[40]  Hoover K, Yee JL, Schultz CM, Rocke DM, Hammock BD, et al. (1998) Effects of plant identity and chemical constituents on the efficacy of a baculovirus against Heliothis virescens. Journal of Chemical Ecology 24: 221–252. doi: 10.1023/a:1022576207506
[41]  Raymond B, Vanbergen A, Pearce I, Hartley SE, Cory JS, et al. (2002) Host plant species can influence the fitness of herbivore pathogens: The winter moth and its nucleopolyhedrovirus. Oecologia 131: 533–541. doi: 10.1007/s00442-002-0926-4
[42]  Farrar J, Ridgway RL (2000) Host plant effects on the activity of selected nuclear polyhedrosis viruses against the corn earworm and beet armyworm (Lepidoptera: Noctuidae). Environmental Entomology 29: 108–115. doi: 10.1603/0046-225x-29.1.108
[43]  Ponton F, Wilson K, Cotter SC, Raubenheimer D, Simpson SJ (2011) Nutritional immunology: A multi-dimensional approach. PLoS Pathog 7: e1002223. doi: 10.1371/journal.ppat.1002223
[44]  Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ (2011) Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol 57: 840–850. doi: 10.1016/j.jinsphys.2011.03.014
[45]  Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology 21: 5124–5137. doi: 10.1111/j.1365-294x.2012.05752.x
[46]  Jakubowska AK, Caccia S, Gordon KH, Ferré J, Herrero S (2010) Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. J Virol 84: 2547–2555. doi: 10.1128/jvi.01860-09
[47]  Smits PH, Vlak JM (1988) Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae. J Invertebr Pathol 51: 107–114. doi: 10.1016/0022-2011(88)90066-3
[48]  Ooi BG, Miller LK (1988) Regulation of Host RNA Levels during Baculovirus Infection. Virology 166: 515–523. doi: 10.1016/0042-6822(88)90522-3
[49]  Nguyen Q, Palfreyman RW, Chan LCL, Reid S, Nielsen LK (2012) Transcriptome sequencing of and microarray development for a Helicoverpa zea cell line to investigate in vitro insect cell-baculovirus interactions. PLoS ONE 7: e36324. doi: 10.1371/journal.pone.0036324
[50]  Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in lepidopteran insects. Advances in Experiemntal Medicine andBiology 708: 181–204. doi: 10.1007/978-1-4419-8059-5_10
[51]  Kingsolver MB, Hardy RW (2012) Making connections in insect innate immunity. Proc Natl Acad Sci U S A 109: 18639–18640. doi: 10.1073/pnas.1216736109
[52]  Moreno-Habel DA, Biglang-awa IM, Dulce A, Luu DD, Garcia P, et al. (2012) Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J Invertebr Pathol 110: 92–101. doi: 10.1016/j.jip.2012.02.007
[53]  Elena SF, Carrera J, Rodrigo G (2011) A systems biology approach to the evolution of plant-virus interactions. Curr Opin Plant Biol 14: 372–377. doi: 10.1016/j.pbi.2011.03.013
[54]  Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK (2006) Host-virus interaction: A new role for microRNAs. Retrovirology 3: 68. doi: 10.1186/1742-4690-3-68
[55]  Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098. doi: 10.1371/journal.ppat.1000098
[56]  Grassmann R, Jeang KT (2008) The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta Gene Regul Mech 1779: 706–711. doi: 10.1016/j.bbagrm.2008.05.005
[57]  Singh J, Singh CP, Bhavani A, Nagaraju J (2010) Discovering microRNAs from Bombyx mori nucleopolyhedrosis virus. Virology 407: 120–128. doi: 10.1016/j.virol.2010.07.033
[58]  Singh CP, Singh J, Nagaraju J (2012) A baculovirus-encoded microRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor ran. J Virol 86: 7867–7879. doi: 10.1128/jvi.00064-12
[59]  Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5: e1000582. doi: 10.1371/journal.ppat.1000582
[60]  Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, et al. (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2: e00065–00011. doi: 10.1128/mbio.00065-11
[61]  Galloway CS, Wang P, Winstanley D, Jones IM (2005) Comparison of the bacterial enhancin-like proteins from Yersinia and Bacillus spp. with a baculovirus enhancin. J Invertebr Pathol 90: 134–137. doi: 10.1016/j.jip.2005.06.008
[62]  Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: Properties and potential. Crit Rev Biotechnol 27: 21–28. doi: 10.1080/07388550601168223
[63]  Hawtin RE, Arnold K, Ayres MD, De Zanotto APM, Howard SC, et al. (1995) Identification and preliminary characterization of a chitinase gene in the Autographa californica nuclear polyhedrosis virus genome. Virology 212: 673–685. doi: 10.1006/viro.1995.1525
[64]  Qin X, Singh KV, Weinstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183: 3372–3382. doi: 10.1128/jb.183.11.3372-3382.2001
[65]  Shin YP, Kyoung MK, Joon HL, Sook JS, In HL (2007) Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infection and Immunity 75: 1861–1869. doi: 10.1128/iai.01473-06
[66]  Wilks J, Golovkina T (2012) Influence of microbiota on viral infections. PLoS Pathog 8: e1002681. doi: 10.1371/journal.ppat.1002681
[67]  Ammann CG, Messer RJ, Varvel K, DeBuysscher BL, LaCasse RA, et al. (2009) Effects of acute and chronic murine norovirus infections on immune responses and recovery from friend retrovirus infection. J Virol 83: 13037–13041. doi: 10.1128/jvi.01445-09
[68]  Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454–459. doi: 10.1038/nature10356
[69]  Graham RI, Grzywacz D, Mushobozi WL, Wilson K (2012) Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol Lett 15: 993–1000. doi: 10.1111/j.1461-0248.2012.01820.x
[70]  Cabodevilla O, Iba?ez I, Simón O, Murillo R, Caballero P, et al. (2011) Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus. Biol Control 56: 184–192. doi: 10.1016/j.biocontrol.2010.10.007
[71]  Mu?oz D, Murillo R, Krell PJ, Vlak JM, Caballero P (1999) Four genotypic variants of a Spodoptera exigua nucleopolyhedrovirus (Se-SP2) are distinguishable by a hypervariable genomic region. Virus Res 59: 61–74. doi: 10.1016/s0168-1702(98)00125-7
[72]  Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202: 586–605. doi: 10.1006/viro.1994.1380
[73]  Vlak JM (1979) The proteins of nonoccluded Autographa californica nuclear polyhedrosis virus produced in an established cell line of Spodoptera frugiperda. J Invertebr Pathol 34: 110–118. doi: 10.1016/0022-2011(79)90089-2
[74]  Pascual L, Jakubowska AK, Blanca JM, Ca?izares J, Ferré J, et al. (2012) The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochem Mol Biol 42: 557–570. doi: 10.1016/j.ibmb.2012.04.003
[75]  Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, et al. (2010) Babelomics: An integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38: W210–W213. doi: 10.1093/nar/gkq388

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133