Apicomplexan parasites are responsible for numerous important human diseases including toxoplasmosis, cryptosporidiosis, and most importantly malaria. There is a constant need for new antimalarials, and one of most keenly pursued drug targets is an ancient algal endosymbiont, the apicoplast. The apicoplast is essential for parasite survival, and several aspects of its metabolism and maintenance have been validated as targets of anti-parasitic drug treatment. Most apicoplast proteins are nuclear encoded and have to be imported into the organelle. Recently, a protein translocon typically required for endoplasmic reticulum associated protein degradation (ERAD) has been proposed to act in apicoplast protein import. Here, we show ubiquitylation to be a conserved and essential component of this process. We identify apicoplast localized ubiquitin activating, conjugating and ligating enzymes in Toxoplasma gondii and Plasmodium falciparum and observe biochemical activity by in vitro reconstitution. Using conditional gene ablation and complementation analysis we link this activity to apicoplast protein import and parasite survival. Our studies suggest ubiquitylation to be a mechanistic requirement of apicoplast protein import independent to the proteasomal degradation pathway.
References
[1]
Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, et al. (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275: 1485–1489. doi: 10.1126/science.275.5305.1485
[2]
Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annual review of plant biology 59: 491–517. doi: 10.1146/annurev.arplant.59.032607.092915
[3]
Seeber F, Soldati-Favre D (2010) Metabolic pathways in the apicoplast of apicomplexa. International review of cell and molecular biology 281: 161–228. doi: 10.1016/s1937-6448(10)81005-6
[4]
Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, et al. (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 95: 12352–12357. doi: 10.1073/pnas.95.21.12352
[5]
Agrawal S, Striepen B (2010) More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 161: 672–687. doi: 10.1016/j.protis.2010.09.002
[6]
van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proceedings of the National Academy of Sciences of the United States of America 105: 13574–13579. doi: 10.1073/pnas.0803862105
[7]
Kalanon M, Tonkin CJ, McFadden GI (2009) Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryotic cell 8: 1146–1154. doi: 10.1128/ec.00061-09
[8]
Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, et al. (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. The Journal of biological chemistry 285: 6848–6856. doi: 10.1074/jbc.m109.074807
[9]
Glaser S, van Dooren GG, Agrawal S, Brooks CF, McFadden GI, et al. (2012) Tic22 is an essential chaperone required for protein import into the apicoplast. The Journal of biological chemistry 287: 39505–39512. doi: 10.1074/jbc.m112.405100
[10]
Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, et al. (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Molecular biology and evolution 24: 918–928. doi: 10.1093/molbev/msm008
[11]
Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334: 1086–1090. doi: 10.1126/science.1209235
[12]
Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, et al. (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryotic cell 8: 1134–1145. doi: 10.1128/ec.00083-09
[13]
Ponts N, Yang J, Chung DW, Prudhomme J, Girke T, et al. (2008) Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PloS one 3: e2386. doi: 10.1371/journal.pone.0002386
[14]
Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Molecular biology and evolution 26: 1781–1790. doi: 10.1093/molbev/msp079
[15]
Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. The Journal of biological chemistry 284: 33683–33691. doi: 10.1074/jbc.m109.044024
[16]
Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Current opinion in chemical biology 8: 610–616. doi: 10.1016/j.cbpa.2004.09.009
[17]
Laney JD, Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97: 427–430. doi: 10.1016/s0092-8674(00)80752-7
[18]
Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Molecular microbiology 76: 793–801. doi: 10.1111/j.1365-2958.2010.07142.x
[19]
Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, et al. (2012) Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Eukaryotic cell 11: 1472–1481. doi: 10.1128/ec.00183-12
[20]
Macgurn JA, Hsu PC, Emr SD (2012) Ubiquitin and membrane protein turnover: from cradle to grave. Annual review of biochemistry 81: 231–259. doi: 10.1146/annurev-biochem-060210-093619
[21]
Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. The Journal of cell biology 162: 71–84. doi: 10.1083/jcb.200302169
[22]
Ernst R, Claessen JH, Mueller B, Sanyal S, Spooner E, et al. (2011) Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS biology 8: e1000605. doi: 10.1371/journal.pbio.1000605
[23]
Sheiner L, Demerly JL, Poulsen N, Beatty WL, Lucas O, et al. (2011) A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor. PLoS pathogens 7: e1002392. doi: 10.1371/journal.ppat.1002392
[24]
Cheng MC, Hsieh EJ, Chen JH, Chen HY, Lin TP (2012) Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant physiology 158: 363–375. doi: 10.1104/pp.111.189738
[25]
Petroski MD, Zhou X, Dong G, Daniel-Issakani S, Payan DG, et al. (2007) Substrate modification with lysine 63-linked ubiquitin chains through the UBC13-UEV1A ubiquitin-conjugating enzyme. The Journal of biological chemistry 282: 29936–29945. doi: 10.1074/jbc.m703911200
[26]
Vesterlund M, Zadjali F, Persson T, Nielsen ML, Kessler BM, et al. (2011) The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels. PloS one 6: e25358. doi: 10.1371/journal.pone.0025358
[27]
Merckx A, Le Roch K, Nivez MP, Dorin D, Alano P, et al. (2003) Identification and initial characterization of three novel cyclin-related proteins of the human malaria parasite Plasmodium falciparum. The Journal of biological chemistry 278: 39839–39850. doi: 10.1074/jbc.m301625200
[28]
DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 118: 565–574. doi: 10.1242/jcs.01627
[29]
Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, et al. (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. The Journal of cell biology 151: 1423–1434. doi: 10.1083/jcb.151.7.1423
[30]
Donald RG, Roos DS (1995) Insertional mutagenesis and marker rescue in a protozoan parasite: cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America 92: 5749–5753. doi: 10.1073/pnas.92.12.5749
[31]
Cook WJ, Jeffrey LC, Xu Y, Chau V (1993) Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry 32: 13809–13817. doi: 10.1021/bi00213a009
[32]
Haas AL, Siepmann TJ (1997) Pathways of ubiquitin conjugation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 11: 1257–1268.
[33]
Cook BW, Shaw GS (2012) Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes. The Biochemical journal 445: 167–174. doi: 10.1042/bj20120504
[34]
Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, et al. (2003) A conserved catalytic residue in the ubiquitin-conjugating enzyme family. The EMBO journal 22: 5241–5250. doi: 10.1093/emboj/cdg501
[35]
Gallagher JR, Matthews KA, Prigge ST (2011) Plasmodium falciparum apicoplast transit peptides are unstructured in vitro and during apicoplast import. Traffic 12: 1124–1138. doi: 10.1111/j.1600-0854.2011.01232.x
[36]
Ling Q, Huang W, Baldwin A, Jarvis P (2012) Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system. Science 338: 655–659. doi: 10.1126/science.1225053
[37]
Karnataki A, DeRocher AE, Feagin JE, Parsons M (2009) Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 166: 126–133. doi: 10.1016/j.molbiopara.2009.03.004
[38]
Schulze A, Standera S, Buerger E, Kikkert M, van Voorden S, et al. (2005) The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. Journal of molecular biology 354: 1021–1027. doi: 10.1016/j.jmb.2005.10.020
[39]
Kny M, Standera S, Hartmann-Petersen R, Kloetzel PM, Seeger M (2011) Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner. The Journal of biological chemistry 286: 5151–5156. doi: 10.1074/jbc.m110.134551
[40]
Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458: 438–444. doi: 10.1038/nature07960
[41]
Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, et al. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503–1508. doi: 10.1126/science.1087025
[42]
Mazumdar J, E HW, Masek K, C AH, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America 103: 13192–13197. doi: 10.1073/pnas.0603391103
[43]
Crawford MJ, Thomsen-Zieger N, Ray M, Schachtner J, Roos DS, et al. (2006) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. The EMBO journal 25: 3214–3222. doi: 10.1038/sj.emboj.7601189