全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Caspase-11 Activation in Response to Bacterial Secretion Systems that Access the Host Cytosol

DOI: 10.1371/journal.ppat.1003400

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inflammasome activation is important for antimicrobial defense because it induces cell death and regulates the secretion of IL-1 family cytokines, which play a critical role in inflammatory responses. The inflammasome activates caspase-1 to process and secrete IL-1β. However, the mechanisms governing IL-1α release are less clear. Recently, a non-canonical inflammasome was described that activates caspase-11 and mediates pyroptosis and release of IL-1α and IL-1β. Caspase-11 activation in response to Gram-negative bacteria requires Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor-inducing interferon-β (TRIF)-dependent interferon production. Whether additional bacterial signals trigger caspase-11 activation is unknown. Many bacterial pathogens use specialized secretion systems to translocate effector proteins into the cytosol of host cells. These secretion systems can also deliver flagellin into the cytosol, which triggers caspase-1 activation and pyroptosis. However, even in the absence of flagellin, these secretion systems induce inflammasome activation and the release of IL-1α and IL-1β, but the inflammasome pathways that mediate this response are unclear. We observe rapid IL-1α and IL-1β release and cell death in response to the type IV or type III secretion systems of Legionella pneumophila and Yersinia pseudotuberculosis. Unlike IL-1β, IL-1α secretion does not require caspase-1. Instead, caspase-11 activation is required for both IL-1α secretion and cell death in response to the activity of these secretion systems. Interestingly, whereas caspase-11 promotes IL-1β release in response to the type IV secretion system through the NLRP3/ASC inflammasome, caspase-11-dependent release of IL-1α is independent of both the NAIP5/NLRC4 and NLRP3/ASC inflammasomes as well as TRIF and type I interferon signaling. Furthermore, we find both overlapping and non-redundant roles for IL-1α and IL-1β in mediating neutrophil recruitment and bacterial clearance in response to pulmonary infection by L. pneumophila. Our findings demonstrate that virulent, but not avirulent, bacteria trigger a rapid caspase-11-dependent innate immune response important for host defense.

References

[1]  Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54 Pt 1: 1–13. doi: 10.1101/sqb.1989.054.01.003
[2]  Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819–826. doi: 10.1038/nature06246
[3]  Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216. doi: 10.1146/annurev.immunol.20.083001.084359
[4]  Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7: 1250–1257. doi: 10.1038/ni1412
[5]  Ting JP, Kastner DL, Hoffman HM (2006) CATERPILLERs, pyrin and hereditary immunological disorders. Nature reviews Immunology 6: 183–195. doi: 10.1038/nri1788
[6]  Harton JA, Linhoff MW, Zhang J, Ting JP (2002) Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. Journal of immunology 169: 4088–4093. doi: 10.4049/jimmunol.169.8.4088
[7]  Chamaillard Inohara, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74: 355–383. doi: 10.1146/annurev.biochem.74.082803.133347
[8]  Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annual review of immunology 29: 707–735. doi: 10.1146/annurev-immunol-031210-101405
[9]  Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular cell 10: 417–426. doi: 10.1016/s1097-2765(02)00599-3
[10]  Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, et al. (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature immunology 11: 1136–1142. doi: 10.1038/ni.1960
[11]  Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nature immunology 13: 333–332. doi: 10.1038/ni.2237
[12]  Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, et al. (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232. doi: 10.1038/nature04515
[13]  Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nature genetics 38: 240–244. doi: 10.1038/ng1724
[14]  Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, et al. (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nature immunology 7: 569–575. doi: 10.1038/ni1344
[15]  Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, et al. (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7: 576–582. doi: 10.1038/ni1346
[16]  Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2: e18. doi: 10.1371/journal.ppat.0020018
[17]  Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, et al. (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. The Journal of experimental medicine 203: 1093–1104. doi: 10.1084/jem.20051659
[18]  Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, et al. (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440: 233–236. doi: 10.1038/nature04517
[19]  Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477: 592–595. doi: 10.1038/nature10394
[20]  Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, et al. (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458: 514–518. doi: 10.1038/nature07725
[21]  Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, et al. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674–677. doi: 10.1126/science.1156995
[22]  Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, et al. (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. The Journal of biological chemistry 277: 21119–21122. doi: 10.1074/jbc.c200179200
[23]  Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, et al. (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24: 317–327. doi: 10.1016/j.immuni.2006.02.004
[24]  Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends in microbiology 9: 113–114. doi: 10.1016/s0966-842x(00)01936-3
[25]  Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and immunity 73: 1907–1916. doi: 10.1128/iai.73.4.1907-1916.2005
[26]  Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117–121. doi: 10.1038/nature10558
[27]  Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, et al. (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150: 606–619. doi: 10.1016/j.cell.2012.07.007
[28]  Gurung P, Malireddi RK, Anand PK, Demon D, Walle LV, et al. (2012) Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. The Journal of biological chemistry 287: 34474–34483. doi: 10.1074/jbc.m112.401406
[29]  Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, et al. (2012) Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490: 288–291. doi: 10.1038/nature11419
[30]  Wang S, Miura M, Jung YK, Zhu H, Li E, et al. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501–509. doi: 10.1016/s0092-8674(00)80943-5
[31]  Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cellular microbiology 10: 2377–2386. doi: 10.1111/j.1462-5822.2008.01187.x
[32]  Cornelis GR (2006) The type III secretion injectisome. Nature reviews Microbiology 4: 811–825. doi: 10.1038/nrmicro1526
[33]  Brodsky IE, Monack D (2009) NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Seminars in immunology 21: 199–207. doi: 10.1016/j.smim.2009.05.007
[34]  Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, et al. (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proceedings of the National Academy of Sciences of the United States of America 107: 3076–3080. doi: 10.1073/pnas.0913087107
[35]  Sun YH, Rolan HG, Tsolis RM (2007) Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. Journal of Biological Chemistry 282: 33897–33901. doi: 10.1074/jbc.c700181200
[36]  Molofsky AB, Byrne BG, Whitfield NN, Madigan CA, Fuse ET, et al. (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203: 1093–1104. doi: 10.1084/jem.20051659
[37]  Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, et al. (1977) Legionnaires' disease: description of an epidemic of pneumonia. The New England journal of medicine 297: 1189–1197. doi: 10.1056/nejm197712012972201
[38]  McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, et al. (1977) Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297: 1197–1203. doi: 10.1056/nejm197712012972202
[39]  Marra A, Blander SJ, Horwitz MA, Shuman HA (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 89: 9607–9611. doi: 10.1073/pnas.89.20.9607
[40]  Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7: 7–19. doi: 10.1111/j.1365-2958.1993.tb01092.x
[41]  Roy CR, Berger KH, Isberg RR (1998) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663–674. doi: 10.1046/j.1365-2958.1998.00841.x
[42]  Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95: 1669–1674. doi: 10.1073/pnas.95.4.1669
[43]  Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873–876. doi: 10.1126/science.279.5352.873
[44]  Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295: 679–682. doi: 10.1126/science.1067025
[45]  Ensminger AW, Isberg RR (2009) Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Current opinion in microbiology 12: 67–73. doi: 10.1016/j.mib.2008.12.004
[46]  Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annual review of cell and developmental biology 26: 261–283. doi: 10.1146/annurev-cellbio-100109-104034
[47]  Case CL, Shin S, Roy CR (2009) Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infection and immunity 77: 1981–1991. doi: 10.1128/iai.01382-08
[48]  Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, et al. (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7: 318–325. doi: 10.1038/ni1305
[49]  Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozoren N, et al. (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281: 35217–35223. doi: 10.1074/jbc.m604933200
[50]  Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, et al. (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature immunology 9: 1171–1178. doi: 10.1038/ni.1646
[51]  Case CL, Roy CR (2011) Asc modulates the function of NLRC4 in response to infection of macrophages by Legionella pneumophila. mBio 2: e001117–11. doi: 10.1128/mbio.00117-11
[52]  Shin S, Case CL, Archer KA, Nogueira CV, Kobayashi KS, et al. (2008) Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog 4: e1000220. doi: 10.1371/journal.ppat.1000220
[53]  Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell host & microbe 8: 471–483. doi: 10.1016/j.chom.2010.11.007
[54]  Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774. doi: 10.1038/356768a0
[55]  Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, et al. (2012) Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36: 388–400. doi: 10.1016/j.immuni.2012.01.018
[56]  Mariathasan S, Newton K, Monack DM, Vucic D, French DM, et al. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430: 213–218. doi: 10.1038/nature02664
[57]  Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, et al. (2010) A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell host & microbe 7: 376–387. doi: 10.1016/j.chom.2010.04.009
[58]  Lilo S, Zheng Y, Bliska JB (2008) Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ. Infection and immunity 76: 3911–3923. doi: 10.1128/iai.01695-07
[59]  Dower SK, Kronheim SR, Hopp TP, Cantrell M, Deeley M, et al. (1986) The cell surface receptors for interleukin-1 alpha and interleukin-1 beta are identical. Nature 324: 266–268. doi: 10.1038/324266a0
[60]  Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, et al. (1998) MyD88, an adapter protein involved in interleukin-1 signaling. The Journal of biological chemistry 273: 12203–12209. doi: 10.1074/jbc.273.20.12203
[61]  Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, et al. (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143–150. doi: 10.1016/s1074-7613(00)80596-8
[62]  Hawn TR, Smith KD, Aderem A, Skerrett SJ (2006) Myeloid differentiation primary response gene (88)- and toll-like receptor 2-deficient mice are susceptible to infection with aerosolized Legionella pneumophila. J Infect Dis 193: 1693–1702. doi: 10.1086/504525
[63]  Archer KA, Roy CR (2006) MyD88-dependent responses involving toll-like receptor 2 are important for protection and clearance of Legionella pneumophila in a mouse model of Legionnaires' disease. Infect Immun 74: 3325–3333. doi: 10.1128/iai.02049-05
[64]  Sporri R, Joller N, Albers U, Hilbi H, Oxenius A (2006) MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J Immunol 176: 6162–6171. doi: 10.4049/jimmunol.176.10.6162
[65]  Hawn TR, Berrington WR, Smith IA, Uematsu S, Akira S, et al. (2007) Altered Inflammatory Responses in TLR5-Deficient Mice Infected with Legionella pneumophila. J Immunol 179: 6981–6987. doi: 10.4049/jimmunol.179.10.6981
[66]  Archer KA, Alexopoulou L, Flavell RA, Roy CR (2009) Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila. Cell Microbiol 11: 21–36. doi: 10.1111/j.1462-5822.2008.01234.x
[67]  LeibundGut-Landmann S, Weidner K, Hilbi H, Oxenius A (2011) Nonhematopoietic cells are key players in innate control of bacterial airway infection. Journal of immunology 186: 3130–3137. doi: 10.4049/jimmunol.1003565
[68]  Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A, et al. (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24: 79–91. doi: 10.1016/j.immuni.2005.11.011
[69]  Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, et al. (2011) Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35: 1023–1034. doi: 10.1016/j.immuni.2011.12.002
[70]  Vance RE, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell host & microbe 6: 10–21. doi: 10.1016/j.chom.2009.06.007
[71]  Minnich SA, Rohde HN (2007) A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Advances in experimental medicine and biology 603: 298–310. doi: 10.1007/978-0-387-72124-8_27
[72]  Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, et al. (2013) Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proceedings of the National Academy of Sciences of the United States of America 110: 1851–1856. doi: 10.1073/pnas.1211521110
[73]  Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, et al. (2013) Caspase-11 protects against bacteria that escape the vacuole. Science 339: 975–978. doi: 10.1126/science.1230751
[74]  Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunological reviews 227: 95–105. doi: 10.1111/j.1600-065x.2008.00730.x
[75]  Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, et al. (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474: 385–389. doi: 10.1038/nature10072
[76]  Monroe KM, McWhirter SM, Vance RE (2009) Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS pathogens 5: e1000665. doi: 10.1371/journal.ppat.1000665
[77]  Auerbuch V, Golenbock DT, Isberg RR (2009) Innate immune recognition of Yersinia pseudotuberculosis type III secretion. PLoS pathogens 5: e1000686. doi: 10.1371/journal.ppat.1000686
[78]  Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132: 818–831. doi: 10.1016/j.cell.2007.12.040
[79]  Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of leukocyte biology 81: 1–5. doi: 10.1189/jlb.0306164
[80]  Akhter A, Caution K, Abu Khweek A, Tazi M, Abdulrahman BA, et al. (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37: 35–47. doi: 10.1016/j.immuni.2012.05.001
[81]  Berger KH, Merriam JJ, Isberg RR (1994) Altered intracellular targeting properties associated with mutations in the Legionella pneumophila dotA gene. Mol Microbiol 14: 809–822. doi: 10.1111/j.1365-2958.1994.tb01317.x
[82]  Sadosky AB, Wiater LA, Shuman HA (1993) Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61: 5361–5373.
[83]  Palmer LE, Hobbie S, Galan JE, Bliska JB (1998) YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Molecular microbiology 27: 953–965. doi: 10.1046/j.1365-2958.1998.00740.x
[84]  Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, et al. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267: 2000–2003. doi: 10.1126/science.7535475
[85]  Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, et al. (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. The Journal of experimental medicine 203: 1407–1412. doi: 10.1084/jem.20060206
[86]  Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, et al. (1994) Functional role of type I and type II interferons in antiviral defense. Science 264: 1918–1921. doi: 10.1126/science.8009221
[87]  Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, et al. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640–643. doi: 10.1126/science.1087262
[88]  Glaccum MB, Stocking KL, Charrier K, Smith JL, Willis CR, et al. (1997) Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. Journal of immunology 159: 3364–3371.
[89]  Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241. doi: 10.1038/nature04516

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133