Host-to-host transmission of a pathogen ensures its successful propagation and maintenance within a host population. A striking feature of disease transmission is the heterogeneity in host infectiousness. It has been proposed that within a host population, 20% of the infected hosts, termed super-shedders, are responsible for 80% of disease transmission. However, very little is known about the immune state of these super-shedders. In this study, we used the model organism Salmonella enterica serovar Typhimurium, an important cause of disease in humans and animal hosts, to study the immune state of super-shedders. Compared to moderate shedders, super-shedder mice had an active inflammatory response in both the gastrointestinal tract and the spleen but a dampened TH1 response specific to the secondary lymphoid organs. Spleens from super-shedder mice had higher numbers of neutrophils, and a dampened T cell response, characterized by higher levels of regulatory T cells (Tregs), fewer T-bet+ (TH1) T cells as well as blunted cytokine responsiveness. Administration of the cytokine granulocyte colony stimulating factor (G-CSF) and subsequent neutrophilia was sufficient to induce the super-shedder immune phenotype in moderate-shedder mice. Similar to super-shedders, these G-CSF-treated moderate-shedders had a dampened TH1 response with fewer T-bet+ T cells and a loss of cytokine responsiveness. Additionally, G-CSF treatment inhibited IL-2-mediated TH1 expansion. Finally, depletion of neutrophils led to an increase in the number of T-bet+ TH1 cells and restored their ability to respond to IL-2. Taken together, we demonstrate a novel role for neutrophils in blunting IL-2-mediated proliferation of the TH1 immune response in the spleens of mice that are colonized by high levels of S. Typhimurium in the gastrointestinal tract.
References
[1]
Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, et al. (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94: 338–342. doi: 10.1073/pnas.94.1.338
[2]
Matthews L, McKendrick IJ, Terent H, Gunn GJ, Synge B, et al. (2005) Super-shedding cattle and the transmission dynamics of Escherichia coli O157. Epidemiol Infect 134: 131 doi:10.1017/S0950268805004590.
[3]
Chase-Topping ME, McKendrick IJ, Pearce MC, MacDonald P, Matthews L, et al. (2007) Risk Factors for the Presence of High-Level Shedders of Escherichia coli O157 on Scottish Farms. J Clin Microbiol 45: 1594–1603 doi:10.1128/JCM.01690-06.
[4]
Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M (2008) Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Micro 6: 904–912 doi:10.1038/nrmicro2029.
[5]
Stein RA (2011) Super-spreaders in infectious diseases. Int J Infect Dis 15: e510–e513 doi:10.1016/j.ijid.2010.06.020.
[6]
Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, et al. (2006) Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. PNAS 103: 547–552. doi: 10.1073/pnas.0503776103
[7]
Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ (2002) Typhoid fever. N Engl J Med 347: 1770–1782 doi:10.1056/NEJMra020201.
[8]
Levine MM, Black RE, Lanata C (1982) Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. The Journal of Infectious Diseases 146: 724–726. doi: 10.1093/infdis/146.6.724
[9]
Merselis JG, Kaye D, Connolly CS, Hook EW (1964) Quantitative bacteriology of the typhoid carrier state. Am J Trop Med Hyg 13: 425–429.
[10]
Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438: 355–359 doi:10.1038/nature04153.
[11]
Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Micro 2: 747–765 doi:10.1038/nrmicro955.
[12]
Wherry EJ (2011) T cell exhaustion. Nature Immunology 131: 492–499 doi:10.1038/ni.2035.
[13]
Antoine P, Olislagers V, Huygens A, Lecomte S, Liesnard C, et al. (2012) Functional Exhaustion of CD4+ T Lymphocytes during Primary Cytomegalovirus Infection. The Journal of Immunology 189: 2665–2672 doi:10.4049/jimmunol.1101165.
[14]
Anderson KM, Czinn SJ, Redline RW, Blanchard TG (2006) Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection. Journal of Immunology 176: 5306–5313. doi: 10.4049/jimmunol.176.9.5306
[15]
Ziegler C, Goldmann O, Hobeika E, Geffers R, Peters G, et al. (2011) The dynamics of T cells during persistent Staphylococcus aureus infection: from antigen-reactivity to in vivo anergy. EMBO Mol Med 3: 652–666 doi:10.1002/emmm.201100173.
[16]
Srinivasan A, Nanton M, Griffin A, Mcsorley SJ (2009) Culling of Activated CD4 T Cells during Typhoid Is Driven by Salmonella Virulence Genes. The Journal of Immunology 182: 7838–7845 doi:10.4049/jimmunol.0900382.
[17]
Johanns TM, Ertelt JM, Rowe JH, Way SS (2010) Regulatory T Cell Suppressive Potency Dictates the Balance between Bacterial Proliferation and Clearance during Persistent Salmonella Infection. PLoS Pathog 6(8): e1001043 doi: 10.1371/journal.ppat.1001043.
[18]
Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, et al. (2007) Host Transmission of Salmonella enterica Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota. Infection and Immunity 76: 403–416 doi:10.1128/IAI.01189-07.
[19]
Vidal S, Gros P, Skamene E (1995) Natural resistance to infection with intracellular parasites: molecular genetics identifies Nrampl as the Bcg/Ity/Lsh locus. Journal of Leukocyte Biology 58: 382–390.
[20]
Valdez Y, Grassl GA, Guttman JA, Coburn B, Gros P, et al. (2009) Nramp1 drives an accelerated inflammatory response during Salmonella-induced colitis in mice. Cell Microbiol 11: 351–362 doi:10.1111/j.1462-5822.2008.01258.x.
[21]
Mastroeni P (2002) Immunity to systemic Salmonella infections. Current Molecular Medicine 2: 393–406. doi: 10.2174/1566524023362492
[22]
Ravindran R, Foley J, Stoklasek T, Glimcher LH, Mcsorley SJ (2005) Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. Journal of Immunology 175: 4603–4610. doi: 10.4049/jimmunol.175.7.4603
[23]
Monack DM, Bouley DM, Falkow S (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199: 231–241 doi:10.1084/jem.20031319.
[24]
Ravindran R, Mcsorley SJ (2005) Tracking the dynamics of T-cell activation in response to Salmonella infection. Immunology 114: 450–458 doi:10.1111/j.1365-2567.2005.02140.x.
[25]
O'Gorman WE, Dooms H, Thorne SH, Kuswanto WF, Simonds EF, et al. (2009) The Initial Phase of an Immune Response Functions to Activate Regulatory T Cells. The Journal of Immunology 183: 332–339 doi:10.4049/jimmunol.0900691.
[26]
Hotson AN, Hardy JW, Hale MB, Contag CH, Nolan GP (2009) The T Cell STAT Signaling Network Is Reprogrammed within Hours of Bacteremia via Secondary Signals. The Journal of Immunology 182: 7558–7568 doi:10.4049/jimmunol.0803666.
[27]
Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, et al. (2010) The Microbiota Mediates Pathogen Clearance from the Gut Lumen after Non-Typhoidal Salmonella Diarrhea. PLoS Pathog 6: e1001097 doi:10.1371/journal.ppat.1001097.t002.
[28]
Boyman O, Kovar M, Rubenstein MP, Surh CD, Sprent J (2006) Selective Stimulation of T Cell Subsets with Antibody-Cytokine Immune Complexes. Science 311: 1924–1927 doi:10.1126/science.1122927.
[29]
Webster KE, Walters S, Kohler RE, Mrkvan T, Boyman O, et al. (2009) In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. Journal of Experimental Medicine 206: 751–760 doi:10.1084/jem.20082824.
[30]
Ichinohe T, Pang IK, Iwasaki A (2010) Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunology 11: 404–410 doi:10.1038/ni.1861.
[31]
Ley K, Smith E, Stark M (2006) IL-17A-Producing Neutrophil-RegulatoryTn Lymphocytes. Immunologic Research 34: 229–42. doi: 10.1385/ir:34:3:229
[32]
Schulz SM, Kohler G, Holscher C, Iwakura Y, Alber G (2008) IL-17A has mild effect on salmonella eneteridis clearance. International Immunology 1–10. doi: 10.1093/intimm/dxn069
[33]
Raffatellu M, Godinez I, Baumler AJ (2008) Simian immunodeficiency virus-induced IL-17 deficiency promotes Salmonella dissemination from the gut. Nature Medicine 14: 421–428. doi: 10.1038/nm1743
[34]
Zhang X, Majlessi L, Deriaud E, Leclerc C, Lo-Man R (2009) Coactivation of Syk Kinase and MyD88 Adaptor Protein Pathways by Bacteria Promotes Regulatory Properties of Neutrophils. Immunity 31: 761–771 doi:10.1016/j.immuni.2009.09.016.
[35]
Nolan CM, White PC, Feeley JC, Hambie EA, Brown SL, et al. (1981) Vi serology in the detection of typhoid carriers. Lancet 1: 583–585. doi: 10.1016/s0140-6736(81)92033-x
[36]
Lanata CF, Levine MM, Ristori C, Black RE, Jimenez L, et al. (1983) Vi serology in detection of chronic Salmonella typhi carriers in an endemic area. Lancet 2: 441–443. doi: 10.1016/s0140-6736(83)90401-4
[37]
Mallouh AA, Sa'di AR (1987) White blood cells and bone marrow in typhoid fever. Pediatr Infect Dis J 6: 527–529. doi: 10.1097/00006454-198706000-00007
[38]
Gallagher JR (1933) The nonfilament polymorphonuclear neutrophil count in Typhoid and undulant fever. American Journal of the Medical Sciences 185 391–393. doi: 10.1097/00000441-193303000-00011
[39]
Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, et al. (2005) The Vi Capsular Antigen of Salmonella enterica Serotype Typhi Reduces Toll-Like receptor-Dependent Interleukin-8 expression in the Intestinal Mucosa. Infection and Immunity 73: 3367–3374. doi: 10.1128/iai.73.6.3367-3374.2005
[40]
Harris JC, Dupont HL, Hornick RB (1972) Fecal leukocytes in diarrheal illness. Ann Intern Med 76: 697–703. doi: 10.7326/0003-4819-76-5-697
[41]
Butler T, Ho M, Acharya G, Tiwari M, Gallati H (1993) Interleukin-6, gamma interferon, and tumor necrosis factor receptors in typhoid fever related to outcome of antimicrobial therapy. Antimicrob Agents Chemother 37: 2418–2421. doi: 10.1128/aac.37.11.2418
[42]
Uthe JJ, Wang Y, Qu L, Nettleton D, Tuggle CK, et al. (2009) Correlating blood immune parameters and a CCT7 genetic variant with the shedding of Salmonella enterica serovar Typhimurium in swine. Vet Microbiol 135: 384–388 doi:10.1016/j.vetmic.2008.09.074.
[43]
Thompson LJ, Dunstan SJ, Dolecek C, Perkins T, House D, et al. (2009) Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. PNAS 106: 22433–22438. doi: 10.1073/pnas.0912386106
[44]
Petrovska L, Aspinall RJ, Barber L, Clare S, Simmons CP, et al. (2004) Salmonella enterica serovar Typhimurium interaction with dendritic cells: impact of the sifA gene. Cell Microbiol 6: 1071–1084 doi:10.1111/j.1462-5822.2004.00419.x.