全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Xanthomonas campestris Type III Effector XopJ Targets the Host Cell Proteasome to Suppress Salicylic-Acid Mediated Plant Defence

DOI: 10.1371/journal.ppat.1003427

Full-Text   Cite this paper   Add to My Lib

Abstract:

The phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) requires type III effector proteins (T3Es) for virulence. After translocation into the host cell, T3Es are thought to interact with components of host immunity to suppress defence responses. XopJ is a T3E protein from Xcv that interferes with plant immune responses; however, its host cellular target is unknown. Here we show that XopJ interacts with the proteasomal subunit RPT6 in yeast and in planta to inhibit proteasome activity. A C235A mutation within the catalytic triad of XopJ as well as a G2A exchange within the N-terminal myristoylation motif abolishes the ability of XopJ to inhibit the proteasome. Xcv ΔxopJ mutants are impaired in growth and display accelerated symptom development including tissue necrosis on susceptible pepper leaves. Application of the proteasome inhibitor MG132 restored the ability of the Xcv ΔxopJ to attenuate the development of leaf necrosis. The XopJ dependent delay of tissue degeneration correlates with reduced levels of salicylic acid (SA) and changes in defence- and senescence-associated gene expression. Necrosis upon infection with Xcv ΔxopJ was greatly reduced in pepper plants with reduced expression of NPR1, a central regulator of SA responses, demonstrating the involvement of SA-signalling in the development of XopJ dependent phenotypes. Our results suggest that XopJ-mediated inhibition of the proteasome interferes with SA-dependent defence response to attenuate onset of necrosis and to alter host transcription. A central role of the proteasome in plant defence is discussed.

References

[1]  Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198: 249–266. doi: 10.1111/j.0105-2896.2004.0119.x
[2]  Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15: 469–476. doi: 10.1016/j.pbi.2012.03.004
[3]  Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17: 644–655. doi: 10.1016/j.tplants.2012.06.011
[4]  Mudgett MB (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol 56: 509–531. doi: 10.1146/annurev.arplant.56.032604.144218
[5]  Robatzek S (2007) Vesicle trafficking in plant immune responses. Cell Microbiol 9: 1–8. doi: 10.1111/j.1462-5822.2006.00829.x
[6]  Jones JD, Dangl JL (2006) The plant immune system. Nature 444: 323–329. doi: 10.1038/nature05286
[7]  Hotson A, Mudgett MB (2004) Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr Opin Plant Biol 7: 384–390. doi: 10.1016/j.pbi.2004.05.003
[8]  Lewis JD, Lee A, Ma W, Zhou H, Guttman DS, et al. (2011) The YopJ superfamily in plant-associated bacteria. Mol Plant Pathol 12: 928–937. doi: 10.1111/j.1364-3703.2011.00719.x
[9]  Ma W, Dong FF, Stavrinides J, Guttman DS (2006) Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2: e209. doi: 10.1371/journal.pgen.0020209.eor
[10]  Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, et al. (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312: 1211–1214. doi: 10.1126/science.1126867
[11]  Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, et al. (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290: 1594–1597. doi: 10.1126/science.290.5496.1594
[12]  Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J, et al. (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J Exp Med 202: 1327–1332. doi: 10.1084/jem.20051194
[13]  Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N (2007) YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol 9: 2700–2715. doi: 10.1111/j.1462-5822.2007.00990.x
[14]  Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, et al. (2011) Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe 9: 177–186. doi: 10.1016/j.chom.2011.02.007
[15]  Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W, et al. (2012) A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog 8: e1002523. doi: 10.1371/journal.ppat.1002523
[16]  Tasset C, Bernoux M, Jauneau A, Pouzet C, Briare C, et al. (2010) Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis. PLoS Pathog 6: e1001202. doi: 10.1371/journal.ppat.1001202
[17]  No?l L, Thieme F, Gabler J, Büttner D, Bonas U (2003) XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J Bacteriol 185: 7092–7102. doi: 10.1128/jb.185.24.7092-7102.2003
[18]  White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10: 749–766. doi: 10.1111/j.1364-3703.2009.00590.x
[19]  Bartetzko V, Sonnewald S, Vogel F, Hartner K, Stadler R, et al. (2009) The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defence responses. Mol Plant Microbe Interact 22: 655–664. doi: 10.1094/mpmi-22-6-0655
[20]  Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, et al. (2007) New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe Interact 20: 1250–1261. doi: 10.1094/mpmi-20-10-1250
[21]  Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10: 385–397. doi: 10.1038/nrm2688
[22]  Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, et al. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30: 360–368. doi: 10.1016/j.molcel.2008.03.004
[23]  Kanayama HO, Tamura T, Ugai S, Kagawa S, Tanahashi N, et al. (1992) Demonstration That a Human 26s Proteolytic Complex Consists of a Proteasome and Multiple Associated Protein-Components and Hydrolyzes ATP and Ubiquitin-Ligated Proteins by Closely Linked Mechanisms. Eur J Biochem 206: 567–578. doi: 10.1111/j.1432-1033.1992.tb16961.x
[24]  Groll M, Schellenberg B, Bachmann AS, Archer CR, Huber R, et al. (2008) A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452: 755–758. doi: 10.1038/nature06782
[25]  Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, et al. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175–176. doi: 10.1016/0378-1119(95)00584-1
[26]  O'Donnell PJ, Jones JB, Antoine FR, Ciardi J, Klee HJ (2001) Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J 25: 315–323. doi: 10.1046/j.1365-313x.2001.00968.x
[27]  DeRenzis FA, Schechtman A (1973) Staining by neutral red and trypan blue in sequence for assaying vital and nonvital cultured cells. Stain Technol 48: 135–136. doi: 10.3109/10520297309116602
[28]  Kim JG, Taylor KW, Hotson A, Keegan M, Schmelz EA, et al. (2008) XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in xanthomonas-infected tomato leaves. Plant Cell 20: 1915–1929. doi: 10.1105/tpc.108.058529
[29]  Jin Kim Y, Kook Hwang B (2000) Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiologia Plantarum 108: 51–60. doi: 10.1034/j.1399-3054.2000.108001051x./
[30]  Lee S, Hwang B (2003) Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta 216: 387–396.
[31]  Herbers K, M?nke G, Badur R, Sonnewald U (1995) A simplified procedure for the subtractive cDNA cloning of photoassimilate-responding genes: Isolation of cDNAs encoding a new class of pathogenesis-related proteins. Plant Mol Biol 29: 1027–1038. doi: 10.1007/bf00014975
[32]  Guo Y, Gan S-S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell & Environ 35: 644–655. doi: 10.1111/j.1365-3040.2011.02442.x
[33]  Morris K, Mackerness SAH, Page T, John CF, Murphy AM, et al. (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23: 677–685. doi: 10.1046/j.1365-313x.2000.00836.x
[34]  Block A, Schmelz E, O'Donnell PJ, Jones JB, Klee HJ (2005) Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiol 138: 1481–1490. doi: 10.1104/pp.105.059246
[35]  John I, Hackett R, Cooper W, Drake R, Farrell A, et al. (1997) Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol 33: 641–651. doi: 10.1007/bf00019009
[36]  John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93: 12768–12773. doi: 10.1073/pnas.93.23.12768
[37]  Pieterse CM, Van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7: 456–464. doi: 10.1016/j.pbi.2004.05.006
[38]  Marino D, Peeters N, Rivas S (2012) Ubiquitination during Plant Immune Signaling. Plant Physiol 160: 15–27. doi: 10.1104/pp.112.199281
[39]  Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol 196: 13–28. doi: 10.1111/j.1469-8137.2012.04266.x
[40]  Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90: 324–335. doi: 10.1016/j.biochi.2007.07.019
[41]  Dielen AS, Badaoui S, Candresse T, German-Retana S (2010) The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol Plant Pathol 11: 293–308. doi: 10.1111/j.1364-3703.2009.00596.x
[42]  Gonzalez-Lamothe R, Tsitsigiannis DI, Ludwig AA, Panicot M, Shirasu K, et al. (2006) The U-box protein CMPG1 is required for efficient activation of defence mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 18: 1067–1083. doi: 10.1105/tpc.106.040998
[43]  Kawasaki T, Nam J, Boyes DC, Holt BF 3rd, Hubert DA, et al. (2005) A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. Plant J 44: 258–270. doi: 10.1111/j.1365-313x.2005.02525.x
[44]  Yang CW, Gonzalez-Lamothe R, Ewan RA, Rowland O, Yoshioka H, et al. (2006) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defence. Plant Cell 18: 1084–1098. doi: 10.1105/tpc.105.039198
[45]  Trujillo M, Ichimura K, Casais C, Shirasu K (2008) Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr Biol 18: 1396–1401. doi: 10.1016/j.cub.2008.07.085
[46]  Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE (2006) A bacterial inhibitor of host programmed cell death defences is an E3 ubiquitin ligase. Science 311: 222–226. doi: 10.1126/science.1120131
[47]  G?hre V, Spallek T, Haweker H, Mersmann S, Mentzel T, et al. (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18: 1824–1832. doi: 10.1016/j.cub.2008.10.063
[48]  Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, et al. (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313: 220–223. doi: 10.1126/science.1129523
[49]  Yao C, Wu Y, Nie H, Tang D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. Plant J 71: 1015–1028. doi: 10.1111/j.1365-313x.2012.05048.x
[50]  Perrett CA, Lin DY, Zhou D (2011) Interactions of bacterial proteins with host eukaryotic ubiquitin pathways. Front Microbiol 2: 143. doi: 10.3389/fmicb.2011.00143
[51]  Singer AU, Schulze S, Skarina T, Xu X, Cui H, et al. (2013) A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog 9: e1003121. doi: 10.1371/journal.ppat.1003121
[52]  Shibahara T, Kawasaki H, Hirano H (2002) Identification of the 19S regulatory particle subunits from the rice 26S proteasome. Eur J Biochem 269: 1474–1483. doi: 10.1046/j.1432-1033.2002.02792.x
[53]  Boisson B, Giglione C, Meinnel T (2003) Unexpected protein families including cell defence components feature in the N-myristoylome of a higher eukaryote. J Biol Chem 278: 43418–43429. doi: 10.1074/jbc.m307321200
[54]  Lee KH, Minami A, Marshall RS, Book AJ, Farmer LM, et al. (2012) The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis. Plant Cell 23: 4298–4317. doi: 10.1105/tpc.111.089482
[55]  O'Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jones JB, et al. (2003) Susceptible to intolerance–a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33: 245–257. doi: 10.1046/j.1365-313x.2003.01619.x
[56]  Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47: 177–206. doi: 10.1146/annurev.phyto.050908.135202
[57]  Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969–980. doi: 10.1016/j.cell.2006.06.054
[58]  DebRoy S, Thilmony R, Kwack YB, Nomura K, He SY (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci USA 101: 9927–9932. doi: 10.1073/pnas.0401601101
[59]  Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, et al. (2007) A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defences. Curr Biol 17: 499–508. doi: 10.1016/j.cub.2007.02.028
[60]  Jelenska J, van Hal JA, Greenberg JT (2010) Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci USA 107: 13177–13182. doi: 10.1073/pnas.0910943107
[61]  Kim JG, Stork W, Mudgett MB (2013) Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SlERF4 to Suppress Ethylene Responses and Promote Pathogen Growth. Cell Host Microbe 13: 143–154. doi: 10.1016/j.chom.2013.01.006
[62]  Schellenberg B, Ramel C, Dudler R (2010) Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol Plant Microbe Interact 23: 1287–1293. doi: 10.1094/mpmi-04-10-0094
[63]  Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, et al. (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137: 860–872. doi: 10.1016/j.cell.2009.03.038
[64]  Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156: 2011–2025. doi: 10.1104/pp.111.177568
[65]  Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, et al. (2010) Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62: 160–170. doi: 10.1111/j.1365-313x.2009.04122.x
[66]  Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science 308: 1036–1040. doi: 10.1126/science.1108791
[67]  Mittal R, Peak-Chew SY, Sade RS, Vallis Y, McMahon HT (2010) The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J Biol Chem 285: 19927–19934. doi: 10.1074/jbc.m110.126581
[68]  Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, et al. (2010) Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytol 187: 1058–1074. doi: 10.1111/j.1469-8137.2010.03346.x
[69]  üstün S, Müller P, Palmisano R, Hensel M, B?rnke F (2012) SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana. New Phytol 194: 1046–1060. doi: 10.1111/j.1469-8137.2012.04124.x
[70]  Fan HY, Hu Y, Tudor M, Ma H (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J 12: 999–1010. doi: 10.1046/j.1365-313x.1997.12050999.x
[71]  B?rnke F (2005) The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J Plant Physiol 162: 161–168. doi: 10.1016/j.jplph.2004.09.006
[72]  Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193–195. doi: 10.1016/s1360-1385(02)02251-3
[73]  Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40: 428–438. doi: 10.1111/j.1365-313x.2004.02219.x
[74]  Huguet E, Hahn K, Wengelnik K, Bonas U (1998) hpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Mol Microbiol 29: 1379–1390. doi: 10.1046/j.1365-2958.1998.01019.x
[75]  Reinheckel T, Ullrich O, Sitte N, Grune T (2000) Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch Biochem Biophys 377: 65–68. doi: 10.1006/abbi.2000.1717
[76]  Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, et al. (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7: e1002046. doi: 10.1371/journal.pgen.1002046
[77]  Stall RE, Bartz JA, Cook AA (1974) Decreased hypersensitivity to xanthomonads in pepper after inoculations with virulent cells of Xanthomonas vesictoria. Phytopathol 64: 731–735. doi: 10.1094/phyto-64-731
[78]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45. doi: 10.1093/nar/29.9.e45
[79]  Engelsdorf T, Horst RJ, Pr?ls R, Pr?schel M, Dietz F, et al. (2013) Reduced carbohydrate availability enhances susceptibility of Arabidopsis towards Colletotrichum higginsianum. Plant Physiol 162: 225–38. doi: 10.1104/pp.112.209676
[80]  Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30: 415–429. doi: 10.1046/j.1365-313x.2002.01297.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133