Upon infection, human adenovirus (HAdV) must activate the expression of its early genes to reprogram the cellular environment to support virus replication. This activation is orchestrated in large part by the first HAdV gene expressed during infection, early region 1A (E1A). E1A binds and appropriates components of the cellular transcriptional machinery to modulate cellular gene transcription and activate viral early genes transcription. Previously, we identified hBre1/RNF20 as a target for E1A. The interaction between E1A and hBre1 antagonizes the innate antiviral response by blocking H2B monoubiquitination, a chromatin modification necessary for the interferon (IFN) response. Here, we describe a second distinct role for the interaction of E1A with hBre1 in transcriptional activation of HAdV early genes. Furthermore, we show that E1A changes the function of hBre1 from a ubiquitin ligase involved in substrate selection to a scaffold which recruits hPaf1 as a means to stimulate transcription and transcription-coupled histone modifications. By using hBre1 to recruit hPaf1, E1A is able to optimally activate viral early transcription and begin the cycle of viral replication. The ability of E1A to target hBre1 to simultaneously repress cellular IFN dependent transcription while activating viral transcription, represents an elegant example of the incredible economy of action accomplished by a viral regulatory protein through a single protein interaction.
Ferrari R, Berk AJ, Kurdistani SK (2009) Viral manipulation of the host epigenome for oncogenic transformation. Nature reviews Genetics 10: 290–294. doi: 10.1038/nrg2539
[3]
Hearing P, Shenk T (1986) The adenovirus type 5 E1A enhancer contains two functionally distinct domains: one is specific for E1A and the other modulates all early units in cis. Cell 45: 229–236. doi: 10.1016/0092-8674(86)90387-9
[4]
Avvakumov N, Wheeler R, D'Halluin JC, Mymryk JS (2002) Comparative Sequence Analysis of the Largest E1A Proteins of Human and Simian Adenoviruses. Journal of Virology 76: 7968–7975. doi: 10.1128/jvi.76.16.7968-7975.2002
[5]
Pelka P, Ablack JNG, Fonseca GJ, Yousef AF, Mymryk JS (2008) Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. Journal of Virology 82: 7252–7263. doi: 10.1128/jvi.00104-08
[6]
Geisberg JV, Lee WS, Berk AJ, Ricciardi RP (1994) The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. Proceedings of the National Academy of Sciences of the United States of America 91: 2488–2492. doi: 10.1073/pnas.91.7.2488
[7]
Yousef AF, Brandl CJ, Mymryk JS (2009) Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae. BMC molecular biology 10: 32. doi: 10.1186/1471-2199-10-32
[8]
Bondesson M, Mannervik M, Akusj?rvi G, Svensson C (1994) An adenovirus E1A transcriptional repressor domain functions as an activator when tethered to a promoter. Nucleic acids research 22: 3053–3060. doi: 10.1093/nar/22.15.3053
[9]
Stevens JL, Cantin GT, Wang G, Shevchenko A, Shevchenko A, et al. (2002) Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296: 755–758. doi: 10.1126/science.1068943
[10]
Mazzarelli JM, Mengus G, Davidson I, Ricciardi RP (1997) The transactivation domain of adenovirus E1A interacts with the C terminus of human TAF(II)135. Journal of Virology 71: 7978–7983.
[11]
Grand RJ, Turnell AS, Mason GG, Wang W, Milner AE, et al. (1999) Adenovirus early region 1A protein binds to mammalian SUG1-a regulatory component of the proteasome. Oncogene 18: 449–458. doi: 10.1038/sj.onc.1202304
[12]
Duyndam MC, Van Dam H, Van Der Eb AJ, Zantema A (1996) The CR1 and CR3 domains of the adenovirus type 5 E1A proteins can independently mediate activation of ATF-2. Journal of Virology 70: 5852–5859.
[13]
Wong HK, Ziff EB (1994) Complementary functions of E1a conserved region 1 cooperate with conserved region 3 to activate adenovirus serotype 5 early promoters. Journal of Virology 68: 4910–4920.
[14]
Ablack JNG, Cohen M, Thillainadesan G, Fonseca GJ, Pelka P, et al. (2012) Cellular GCN5 is a novel regulator of human adenovirus E1A-conserved region 3 transactivation. Journal of virology 86: 8198–8209. doi: 10.1128/jvi.00289-12
[15]
Ablack JNG, Pelka P, Yousef AF, Turnell AS, Grand RJA, et al. (2010) Comparison of E1A CR3-dependent transcriptional activation across six different human adenovirus subgroups. Journal of Virology 84: 12771–12781. doi: 10.1128/jvi.01243-10
[16]
Berk AJ (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24: 7673–7685. doi: 10.1038/sj.onc.1209040
[17]
Pelka P, Ablack JNG, Shuen M, Yousef AF, Rasti M, et al. (2009) Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 391: 90–98. doi: 10.1016/j.virol.2009.05.024
[18]
Hateboer G, Gennissen A, Ramos YF, Kerkhoven RM, Sonntag-Buck V, et al. (1995) BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. the The European Molecular Biology Organization Journal 14: 3159–3169.
[19]
Pelka P, Ablack JNG, Torchia J, Turnell AS, Grand RJA, et al. (2009) Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic acids research 37: 1095–1106. doi: 10.1093/nar/gkn1057
[20]
Fonseca GJ, Thillainadesan G, Yousef AF, Ablack JN, Mossman KL, et al. (2012) Adenovirus evasion of interferon-mediated innate immunity by direct antagonism of a cellular histone posttranslational modification. Cell host & microbe 11: 597–606. doi: 10.1016/j.chom.2012.05.005
[21]
Kim J, Guermah M, McGinty RK, Lee J-S, Tang Z, et al. (2009) RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137: 459–471. doi: 10.1016/j.cell.2009.02.027
[22]
Osley MA (2004) H2B ubiquitylation: the end is in sight. Biochimica et biophysica acta 1677: 74–78. doi: 10.1016/j.bbaexp.2003.10.013
[23]
Shema E, Tirosh I, Aylon Y, Huang J, Ye C, et al. (2008) The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes & development 22: 2664–2676. doi: 10.1101/gad.1703008
[24]
Kim J, Roeder RG (2009) Direct Bre1-Paf1 Complex Interactions and RING Finger-independent Bre1-Rad6 Interactions Mediate Histone H2B Ubiquitylation in Yeast. The Journal of Biological Chemistry 284: 20582–20592. doi: 10.1074/jbc.m109.017442
[25]
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. The Journal of Biological Chemistry 278: 34739–34742. doi: 10.1074/jbc.c300269200
[26]
Egan CAY, Jelsma TN, Howe JA, Bayley ST, Ferguson B, et al. (1988) Mapping of Cellular Protein-Binding Sites on the Products of Early-Region lA of Human Adenovirus Type 5. Molecular and Cellular Biology 8: 3955–3959.
[27]
Mymryk JS, Lee RW, Bayley ST (1992) Ability of adenovirus 5 E1A proteins to suppress differentiation of BC3H1 myoblasts correlates with their binding to a 300 kDa cellular protein. Molecular biology of the cell 3: 1107–1115. doi: 10.1091/mbc.3.10.1107
[28]
Rasti M, Grand RJA, Yousef AF, Shuen M, Mymryk JS, et al. (2006) Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription. The EMBO journal 25: 2710–2722. doi: 10.1038/sj.emboj.7601169
[29]
Ferrari R, Pellegrini M, Horwitz Ga, Xie W, Berk AJ, et al. (2008) Epigenetic reprogramming by adenovirus e1a. Science 321: 1086–1088. doi: 10.1126/science.1155546
[30]
Lee J-S, Shukla A, Schneider J, Swanson SK, Washburn MP, et al. (2007) Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131: 1084–1096. doi: 10.1016/j.cell.2007.09.046
[31]
Hahn MA, Dickson K-A, Jackson S, Clarkson A, Gill AJ, et al. (2012) The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Human molecular genetics 21: 559–568. doi: 10.1093/hmg/ddr490
[32]
Mohan M, Herz H, Takahashi Y, Lin C, Lai KC, et al. (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex ( DotCom ). Genes & Development 24: 574–589. doi: 10.1101/gad.1898410
[33]
Jelsma TN, Howe JA, Mymryk JS, Evelegh CM, Cunniff NF, et al. (1989) Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 171: 120–130. doi: 10.1016/0042-6822(89)90518-7
[34]
Horwitz Ga, Zhang K, McBrian Ma, Grunstein M, Kurdistani SK, et al. (2008) Adenovirus small e1a alters global patterns of histone modification. Science 321: 1084–1085. doi: 10.1126/science.1155544
[35]
Tomson BN, Arndt KM (2012) The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochimica et biophysica acta 1829(1): 116–26. doi: 10.1016/j.bbagrm.2012.08.011
[36]
Van Loon AE, Gilardi P, Perricaudet M, Rozijn TH, Sussenbach JS (1987) Transcriptional activation by the E1A regions of adenovirus types 40 and 41. Virology 160: 305–307. doi: 10.1016/0042-6822(87)90080-8
[37]
Zhao H, Boije H, Granberg F, Pettersson U, Svensson C (2009) Activation of the interferon-induced STAT pathway during an adenovirus type 12 infection. Virology 392: 186–195. doi: 10.1016/j.virol.2009.07.006
[38]
Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, et al. (1994) Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes & development 8: 869–884. doi: 10.1101/gad.8.8.869
[39]
Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, et al. (2008) Adenovirus small e1a alters global patterns of histone modification. Science (New York, NY) 321: 1084–1085. doi: 10.1126/science.1155544
[40]
Chen J, Li Q (2011) Life and death of transcriptional co-activator p300. Epigenetics: official journal of the DNA Methylation Society 6: 957–961. doi: 10.4161/epi.6.8.16065
[41]
Bedford DC, Kasper LH, Fukuyama T, Brindle PK (2010) Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics: official journal of the DNA Methylation Society 5: 9–15. doi: 10.4161/epi.5.1.10449
[42]
Ferreon JC, Martinez-Yamout Ma, Dyson HJ, Wright PE (2009) Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proceedings of the National Academy of Sciences of the United States of America 106: 13260–13265. doi: 10.1073/pnas.0906770106
[43]
Marazzi I, Ho JSY, Kim J, Manicassamy B, Dewell S, et al. (2012) Suppression of the antiviral response by an influenza histone mimic. Nature 483: 428–433. doi: 10.1038/nature10892
[44]
Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, et al. (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Molecular cell 38: 439–451. doi: 10.1016/j.molcel.2010.04.012
[45]
Jones N, Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689. doi: 10.1016/0092-8674(79)90275-7