全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage

DOI: 10.1371/journal.ppat.1003380

Full-Text   Cite this paper   Add to My Lib

Abstract:

Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

References

[1]  Klugman KP, Madhi SA, Feldman C (2007) HIV and pneumococcal disease. Curr Opin Infect Dis 20: 11–15. doi: 10.1097/qco.0b013e328012c5f1
[2]  Schmidt H, Heimann B, Djukic M, Mazurek C, Fels C, et al. (2006) Neuropsychological sequelae of bacterial and viral meningitis. Brain 129: 333–345. doi: 10.1093/brain/awh711
[3]  Nau R, Soto A, Bruck W (1999) Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neuropathol Exp Neurol 58: 265–274. doi: 10.1097/00005072-199903000-00006
[4]  Johnson MK, Geoffroy C, Alouf JE (1980) Binding of cholesterol by sulfhydryl-activated cytolysins. Infect Immun 27: 97–101.
[5]  Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121: 247–256. doi: 10.1016/j.cell.2005.02.033
[6]  Iliev AI, Djannatian JR, Opazo F, Gerber J, Nau R, et al. (2009) Rapid microtubule bundling and stabilization by the Streptococcus pneumoniae neurotoxin pneumolysin in a cholesterol-dependent, non-lytic and Src-kinase dependent manner inhibits intracellular trafficking. Mol Microbiol 71: 461–477. doi: 10.1111/j.1365-2958.2008.06538.x
[7]  Iliev AI, Djannatian JR, Nau R, Mitchell TJ, Wouters FS (2007) Cholesterol-dependent actin remodeling via RhoA and Rac1 activation by the Streptococcus pneumoniae toxin pneumolysin. Proc Natl Acad Sci U S A 104: 2897–2902. doi: 10.1073/pnas.0608213104
[8]  Hupp S, Heimeroth V, Wippel C, Fortsch C, Ma J, et al. (2012) Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema. Glia 60: 137–146. doi: 10.1002/glia.21256
[9]  Kirkham LA, Kerr AR, Douce GR, Paterson GK, Dilts DA, et al. (2006) Construction and immunological characterization of a novel nontoxic protective pneumolysin mutant for use in future pneumococcal vaccines. Infect Immun 74: 586–593. doi: 10.1128/iai.74.1.586-593.2006
[10]  Rei? A, Braun JS, J?ger K, Freyer D, Laube G, et al. (2011) Bacterial Pore-Forming Cytolysins Induce Neuronal Damage in a Rat Model of Neonatal Meningitis. Journal of Infectious Diseases 203: 393–400. doi: 10.1093/infdis/jiq047
[11]  Hirst RA, Gosai B, Rutman A, Guerin CJ, Nicotera P, et al. (2008) Streptococcus pneumoniae deficient in pneumolysin or autolysin has reduced virulence in meningitis. The Journal of infectious diseases 197: 744–751. doi: 10.1086/527322
[12]  Wall EC, Gordon SB, Hussain S, Goonetilleke UR, Gritzfeld J, et al. (2012) Persistence of Pneumolysin in the Cerebrospinal Fluid of Patients With Pneumococcal Meningitis Is Associated With Mortality. Clinical infectious diseases 54: 701–705. doi: 10.1093/cid/cir926
[13]  Friedland IR, Paris MM, Hickey S, Shelton S, Olsen K, et al. (1995) The limited role of pneumolysin in the pathogenesis of pneumococcal meningitis. J Infect Dis 172: 805–809. doi: 10.1093/infdis/172.3.805
[14]  Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anatomy and embryology 190: 307–337. doi: 10.1007/bf00187291
[15]  Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, et al. (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nature neuroscience 14: 1276–1284. doi: 10.1038/nn.2929
[16]  Reichenbach A, Derouiche A, Kirchhoff F (2010) Morphology and dynamics of perisynaptic glia. Brain research reviews 63: 11–25. doi: 10.1016/j.brainresrev.2010.02.003
[17]  Lippman J, Dunaevsky A (2005) Dendritic spine morphogenesis and plasticity. J Neurobiol 64: 47–57. doi: 10.1002/neu.20149
[18]  Smart FM, Halpain S (2000) Regulation of dendritic spine stability. Hippocampus 10: 542–554. doi: 10.1002/1098-1063(2000)10:5<542::aid-hipo4>3.0.co;2-7
[19]  Bosch M, Hayashi Y (2011) Structural plasticity of dendritic spines. Current opinion in neurobiology 22(3): 383–8. doi: 10.1016/j.conb.2011.09.002
[20]  Knobloch M, Mansuy IM (2008) Dendritic spine loss and synaptic alterations in Alzheimer's disease. Molecular neurobiology 37: 73–82. doi: 10.1007/s12035-008-8018-z
[21]  Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nature neuroscience 14: 285–293. doi: 10.1038/nn.2741
[22]  De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. The Journal of cell biology 96: 1337–1354. doi: 10.1083/jcb.96.5.1337
[23]  Vessey JP, Karra D (2007) More than just synaptic building blocks: scaffolding proteins of the post-synaptic density regulate dendritic patterning. J Neurochem 102: 324–332. doi: 10.1111/j.1471-4159.2007.04662.x
[24]  Wippel C, Fortsch C, Hupp S, Maier E, Benz R, et al. (2011) Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue. The Journal of infectious diseases 204: 930–936. doi: 10.1093/infdis/jir434
[25]  Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, et al. (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45: 279–291. doi: 10.1016/j.neuron.2005.01.003
[26]  Swann JW, Al-Noori S, Jiang M, Lee CL (2000) Spine loss and other dendritic abnormalities in epilepsy. Hippocampus 10: 617–625. doi: 10.1002/1098-1063(2000)10:5<617::aid-hipo13>3.0.co;2-r
[27]  Greenwood SM, Connolly CN (2007) Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53: 891–898. doi: 10.1016/j.neuropharm.2007.10.003
[28]  Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1: 213–222. doi: 10.1080/14734220260418448
[29]  Nithianantharajah J, Hannan AJ (2012) Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington's disease. Neuroscience doi: 10.1016/j.neuroscience.2012.05.043.
[30]  Giannakopoulos P, Kovari E, Gold G, von Gunten A, Hof PR, et al. (2009) Pathological substrates of cognitive decline in Alzheimer's disease. Frontiers of neurology and neuroscience 24: 20–29. doi: 10.1159/000197881
[31]  Grandgirard D, Steiner O, Tauber MG, Leib SL (2007) An infant mouse model of brain damage in pneumococcal meningitis. Acta neuropathologica 114: 609–617. doi: 10.1007/s00401-007-0304-8
[32]  Zweigner J, Jackowski S, Smith SH, Van Der Merwe M, Weber JR, et al. (2004) Bacterial inhibition of phosphatidylcholine synthesis triggers apoptosis in the brain. The Journal of experimental medicine 200: 99–106. doi: 10.1084/jem.20032100
[33]  Spranger M, Schwab S, Krempien S, Winterholler M, Steiner T, et al. (1996) Excess glutamate levels in the cerebrospinal fluid predict clinical outcome of bacterial meningitis. Archives of neurology 53: 992–996. doi: 10.1001/archneur.1996.00550100066016
[34]  Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, et al. (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. Journal of the neurological sciences 143: 126–131. doi: 10.1016/s0022-510x(96)00197-9
[35]  Schwerin P, Bessman SP, Waelsch H (1950) The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. Journal of Biological Chemistry 184: 37–44.
[36]  Wilke S, Thomas R, Allcock N, Fern R (2004) Mechanism of acute ischemic injury of oligodendroglia in early myelinating white matter: the importance of astrocyte injury and glutamate release. Journal of neuropathology and experimental neurology 63: 872–881.
[37]  Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. Journal of neuroscience research 85: 2059–2070. doi: 10.1002/jnr.21325
[38]  Faddis BT, Hasbani MJ, Goldberg MP (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci 17: 951–959.
[39]  Waataja JJ, Kim HJ, Roloff AM, Thayer SA (2008) Excitotoxic loss of post-synaptic sites is distinct temporally and mechanistically from neuronal death. Journal of Neurochemistry 104: 364–375. doi: 10.1111/j.1471-4159.2007.04973.x
[40]  Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, et al. (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7: 613–620. doi: 10.1038/nn1246
[41]  Liu T, Sun L, Xiong Y, Shang S, Guo N, et al. (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. The Journal of neuroscience : the official journal of the Society for Neuroscience 31: 10593–10601. doi: 10.1523/jneurosci.6401-10.2011
[42]  Stenovec M, Kreft M, Grilc S, Potokar M, Kreft ME, et al. (2007) Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Experimental Cell Research 313: 3809–3818. doi: 10.1016/j.yexcr.2007.08.020
[43]  Stringaris AK, Geisenhainer J, Bergmann F, Balshusemann C, Lee U, et al. (2002) Neurotoxicity of pneumolysin, a major pneumococcal virulence factor, involves calcium influx and depends on activation of p38 mitogen-activated protein kinase. Neurobiol Dis 11: 355–368. doi: 10.1006/nbdi.2002.0561
[44]  Ikegaya Y, Kim JA, Baba M, Iwatsubo T, Nishiyama N, et al. (2001) Rapid and reversible changes in dendrite morphology and synaptic efficacy following NMDA receptor activation: implication for a cellular defense against excitotoxicity. Journal of cell science 114: 4083–4093.
[45]  F?rtsch C, Hupp S, Ma J, Mitchell TJ, Maier E, et al. (2011) Changes in Astrocyte Shape Induced by Sublytic Concentrations of the Cholesterol-Dependent Cytolysin Pneumolysin Still Require Pore-Forming Capacity. Toxins 3: 43–62. doi: 10.3390/toxins3010043
[46]  Braun JS, Sublett JE, Freyer D, Mitchell TJ, Cleveland JL, et al. (2002) Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109: 19–27. doi: 10.1172/jci200212035
[47]  Hupp S, Heimeroth V, Wippel C, Fortsch C, Ma J, et al. (2011) Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema. Glia 60(1): 137–46. doi: 10.1002/glia.21256
[48]  Moodley M, Bullock MR (1985) Severe neurological sequelae of childhood bacterial meningitis. S Afr Med J 68: 566–570.
[49]  Prockop LD, Fishman RA (1968) Experimental pneumococcal meningitis. Permeability changes influencing the concentration of sugars and macromolecules in cerebrospinal fluid. Arch Neurol 19: 449–463. doi: 10.1001/archneur.1968.00480050019001
[50]  Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, et al. (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100: 1966–1971. doi: 10.1073/pnas.0435928100
[51]  Ebert S, Gerber J, Bader S, Muhlhauser F, Brechtel K, et al. (2005) Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J Neuroimmunol 159: 87–96. doi: 10.1016/j.jneuroim.2004.10.005
[52]  Douce G, Ross K, Cowan G, Ma J, Mitchell TJ (2010) Novel mucosal vaccines generated by genetic conjugation of heterologous proteins to pneumolysin (PLY) from Streptococcus pneumoniae. Vaccine 28: 3231–3237. doi: 10.1016/j.vaccine.2010.02.014
[53]  Wellmer A, Zysk G, Gerber J, Kunst T, Von Mering M, et al. (2002) Decreased virulence of a pneumolysin-deficient strain of Streptococcus pneumoniae in murine meningitis. Infect Immun 70: 6504–6508. doi: 10.1128/iai.70.11.6504-6508.2002
[54]  Klauer S (1991) The corticotectal projection of the rat established in organotypic culture. Neuroreport 2: 569–572. doi: 10.1097/00001756-199110000-00004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133